

MOUNTING SURFACE

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

Maximum operating pressure: - ports P - A - B - port T	bar	250 160	
Maximum flow rate	l/min	20	
Pressure drop ∆p-Q	see	paragraph 4	
Operating limits	see	paragraph 5	
Electrical features	see paragraph 7		
Electrical connections	DIN 43650		
Ambient temperature range	°C -20 / +50		
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Masse: single solenoid valve double solenoid valve	kg	0,8 1,1	

DL2 SOLENOID OPERATED DIRECTIONAL CONTROL VALVE COMPACT VERSION

SERIES 10

SUBPLATE MOUNTING ISO 4401-02 (CETOP R02)

p max 250 bar Q max 20 l/min

OPERATING PRINCIPLE

- Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401-02 (CETOP RP 121H) standards.
- Compact design with reduced solenoid dimensions, suitable for mini-power packs and mobile and agricultural applications.
- The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see paragraph 7).

— The valve is supplied with 4 way designs, with 2 or 3 positions and with several interchangeable spools with different porting arrangements.

 The valve is available with DC or rectified current solenoids.

1 - IDENTIFICATION CODE

2 - SPOOL TYPE

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE DROPS Ap-Q

(obtained with viscosity of 36 cSt at 50 °C)

ENERGIZED VALVE

	FLOW DIRECTIONS					
SPOOL	P→A	P→B	A→T	B→T		
	CURVES ON GRAPHS					
S1, SA1, SB1	1	1	1	1		
S2, SA2, SB2	1	1	1	1		
S3, SA3, SB3	1	1	1	1		
S4, SA4, SB4	2	2	2	2		
TA, TB	1	1	1	1		

For the pressure drop with a de-energized value $P \rightarrow T$ of the spools S2 and S4 refer to the curve 1.

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

SPOOL	CURVE
S1, S3, S4, TA, TB	1
S2	2

6 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50° C.

TIMES (±	10%) [ms]
ENERGIZING	DE-ENERGIZING
25 ÷ 75	15 ÷ 25

7 - ELECTRICAL FEATURES

7.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

The interchangeability of coils of different voltages is allowed within the same type of supply current, alternating or direct.

NOTE: In order to further reduce the emissions, with DC supply, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

SUPPLY VOLTAGE FLUCTUATION	+5% -10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95 EC
CLASS OF PROTECTION : Atmospheric agents CEI EN 60529 Coil insulation (VDE 0580) Impregnation:	IP 65* class H class F

(*) The protection degree is guaranteed only with the connector correctly connected and installed

7.2 - DC valve - Current and power consumption

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm's law: $V = R \times I$

'R' coil must be used when the valve is fed with AC power supply subsequently rectified by means of rectifier bridge, externally or incorporated in the "D" type connector (see cat. 49 000).

The table shows current and power consumption values for DC and rectified current coil types.

	Nominal voltage [V]	Resistance at 20°C (±1%) [Ω]	Current consumption (±5%) [A]	Power cor (+5% [W]	nsumption -10%) [VA]	Coil code
D12	12	6.7	2.4	28.8		1903320
D24	24	24	1.2	28.8		1903321
R110	110	350	0.3		29.7	1903322
R220	230	1500	0.15		31	1903323

8 - ELECTRIC CONNECTORS

The solenoid valves are not supplied with connector. Connectors must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

9 - INSTALLATION

Configurations with centering and return springs can be mounted in any position.

Valve fitting takes place by means of screws or tie rods, fixing the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

DL2 SERIES 10

10 - DL2 OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 150/117 ED

MOUNTING INTERFACE

PERFORMANCES

(obtained with mineral oil with viscosity of 36 cSt at 50°C)

Maximum or	perating pressure:		CC	CA	
- P	- A - B ports	bar	350		
- T port			210 160		
Maximum flo	owrate	l/min	100		
Pressure dro	ops ∆p-Q	se	e paragraph	4	
Operating lir	nits	se	e paragraph	6	
Electrical fea	atures	se	see paragraph 7		
Electrical co	nnections	see paragraph 11			
Ambient terr	nperature range	°C	-20 / +50		
Fluid temper	rature range	°C	-20 / +80		
Fluid viscosi	ity range	cSt	10 ÷ 400		
Fluid contamination degree		according to ISO 4406:1999 class 20/18/15		1999 5	
Recommend	ded viscosity	cSt	25		
Mass:	single solenoid valve double solenoid valve	kg	1,5 2	1,4 2	

DS3 SOLENOID OPERATED DIRECTIONAL CONTROL VALVE

SUBPLATE MOUNTING ISO 4401-03

p max 350 barQ max 100 l/min

OPERATING PRINCIPLE

- Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401-03 standards.
- The valve is supplied with 3 or 4 ways design, with 2 or 3 positions with a wide range of spools.

The valve body is made with high strength iron castings provided with wide internal paths in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see par. 7).

— The valve is available with DC or AC solenoids. DC solenoids can also be fed with AC power supply, by using connectors with a built-in rectifier bridge (see paragraphs 6.4 and 7.2).

— The DC valve is also available in a soft-shifting version (see par. 14).

— The DC valve is also available with zinc-nickel coating that ensures a salt spray resistance up to 600 hours .

It is available a version with UL certified 24V DC coils for Canada and the United States.
(see par. 15).

- Alternative to the standard manual override there are lever, push, boot and mechanical detent devices.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

Type S*: 2 solenoids - 3 positions with spring centering В 0 b₩ib аÖ S1 S2 æΩ S3 ٣ſ S4 ЖX S5 mΧ S6 S7 S8 *m* S9 μ S10 #X145 S11 S12 ₩X μ S17 S18 μ S19 mΥ S20 ₩. S21 S22 ₩X S23 ₩ S26 ₽ ₩Ę. S27 S28 \$29 PH

Type **RK**: 2 solenoids - 2 positions with mechanical retention

Type **SA***: 1 solenoid side A 2 positions (central + external) with spring centering A B

Type **RSA***: 1 solenoid side A 2 positions (external + central) with return spring

Type **TA**: 1 solenoid side A 2 external positions with return spring

Type **TA***: 1 solenoid side A 2 positions with return spring

Туре **SB***:

1 solenoid side B 2 positions (central + external) with spring centering

Type **RSB***: 1 solenoid side B 2 positions (external + central) with return spring

Type **TB**: 1 solenoid side B 2 external positions with return spring

Type **TB***: 1 solenoid side B 2 positions with return spring

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification, feasibility and operating limits.

DS3

4 - PRESSURE DROPS Δp -Q (obtained with viscosity 36 cSt at 50 °C)

ENERGIZED POSITION

	FLOW DIRECTION			N
SPOOL TYPE	P→A	P→B	A→T	B→T
	Cl	JRVES (ON GRAF	РН
S1, SA1, SB1	2	2	3	3
S2, SA2, SB2	1	1	3	3
S3, SA3, SB3, RSA3, RSB3	3	3	1	1
S4, SA4, SB4, RSA4, RSB4	5	5	5	5
S5	2	1	3	3
S6	2	2	3	1
S7, S8	4	5	5	5
S9	2	2	3	3
S10	1	3	1	3
S11	2	2	1	3
S12, S17, S19	2	2	3	3
S18	1	2	3	3
S20, S22	1	5	2	
S21, S23	5	1		2
S28	6	5	-	6
S29	5	6	6	-
TA, TB	3	3	3	3
TA02, TB02	2	2	2	2
TA23, TB23	3	3		
RK, RK02, RK1, 1RK	2	2	2	2

For pressure drops between A and B lines of spools S10, S20, S21, S22 and S23, which are used in the regenerative diagram, refer to curve 5.

DE-ENERGIZED POSITION

	FLOW DIRECTION				
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T
		CURVI	ES ON C	GRAPH	
S2, SA2, SB2					2
S3, SA3, SB3, RSA3, RSB3			3	3	
S4, SA4, SB4, RSA4, RSB4					3
S5		4			
S6				3	
S7, S8			6	6	3
S10	3	3			
S11			3		
S18	4				
S22, S23			3	3	
S28, S29				6	

5 - SWITCHING TIMES

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

	SPOOL TYPE	TIMES [ms]		
		ENERGIZING	DE-ENERGIZING	
	CC	25 ÷ 75	15 ÷ 25	
	CA	10 ÷ 25	15 ÷ 40	

6 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

The limits for TA02 and TA spools refer to the 4-way operation. The operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow are shown in the chart on the next page. The performance of the DC solenoid powered by AC with rectifier connectors are at par. 6.4. The performances of the soft-shift valve are shown at par. 14.

6.1 - Valves in standard operation

DC SOLENOID VALVE

AC SOLENOID VALVE

6000	CURVE		
SPOOL	P→A	P→B	
S1,SA1,SB1	1	1	
S2, SA2, SB2	2	2	
S3, SA3, SB3	3	3	
S4, SA4, SB4	4	4	
S5	5	5	
S6	4	6	
S7	4	4	
S8	4	4	
S9	7	7	
S10	7	7	
S11	4	6	
S12	1	1	
S17	4	4	
S18	5	5	
S19	4	4	
S20	6*	6	
S21	6	6*	
S22	6	6	
S23	6	6	
S28	9*	9*	
S29	9*	9*	
TA, TB	7	7	
TA02, TB02	8	8	
TA23, TB23	2	2	
RK	7	7	
RK02	8	8	
RK1, 1RK	7	7	

SPOOL	CURVE		
SPOOL	P→A	Р→В	
S1,SA1,SB1	1	1	
S2, SA2, SB2	2	2	
S3, SA3, SB3	3	3	
S4, SA4, SB4	2	2	
S5	5	5	
S6	6	6	
S7	4	4	
S8	4	4	
S9	7	7	
S10	8	8	
S11	6	6	
S12	2	2	
S17	7	7	
S18	5	5	
S19	7	7	
S20	10*	10	
S21	10	10*	
S22	10*	10	
S23	10	11*	
S28	\succ	\ge	
S29	\bowtie	\bowtie	
TA, TB	1	1	
TA02, TB02	1	1	
TA23, TB23	2	2	
RK	8	8	
RK02	9	9	
RK1, 1RK	8	8	

* Performance obtained for a valve with A and B lines connected the one to the piston-side chamber and the other to the rod-side chamber of a double-acting cylinder with area ratio 2:1.

SPOOL	CURVE
RSA1	12
RSA2	13
RSA3	14
RSA4	15

6.2 - 4-way valve in 3-way operation

Operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow.

6.3 - AC solenoid valve with coil A110 fed with 110V - 60 Hz

SPOOL	CURVE		
SFOOL	P→A	P→B	
S1,SA1, SB1	1	1	
S2, SA2, SB2	2	2	
S3, SA3, SB3	3	3	
S4, SA4, SB4	4	4	
S9	5	5	
TA, TB	2	2	
RK	6	6	

SPOOL	CURVE		
SPOOL	P→A	P→B	
S1, SA1, SB1	2	2	
S2, SA2, SB2	3	3	
S3, SA3, SB3	4	4	
S4, SA4, SB4	2	2	
S9	5	5	
TA, TB	6	6	
RK	1	1	

7 - ELECTRICAL FEATURES

7.1- Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

Protection from atmospheric agents IEC 60529

The IP protection degree is guaranteed only with both valve and connectors correctly connected and installed.

connection type	electric connection protection	whole valve protection
K1 DIN 43650	IP65	
K2 AMP JUNIOR	IP65/67	IP65
K7 DEUTSCH DT04 male	IP65/IP67/IP69 IP69K*	

(*) The IP69K protection degree is not taken into account in IEC 60529 but it is included in ISO 20653.

7.2 - Current and absorbed power for DC solenoid valve

The table shows current and power consumption values of the DC coils.

Using connectors type "D" (see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils (starting from 48V voltage) with alternating current (50 or 60 Hz), considering a reduction of the operating limits (see diagram at section 6.4).

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	18.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE)	In compliance with 2014/30/EU
LOW VOLTAGE	In compliance with 2014/35/EU
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation (DC valve) (AC valve)	class H class F class H

NOTE: In order to further reduce the emissions, with DC supply, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

Coils for direct current (values ±10%)

	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt [W]	K1	Coil code K2	K7
D12	12	4,4	2,72	32,7	1903080	1903100	1902940
D14	14	7,2	1.93	27	1903086		
D24	24	18,6	1,29	31	1903081	1903101	1902941
D28	28	26	1,11	31	1903082		
D48	48	78,6	0,61	29,5	1903083		
D110	110	423	0,26	28,2	1903464		
D125	125	550	0,23	28,6	1903467		
D220	220	1692	0,13	28,2	1903465		

7.3 - Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, for AC coils.

Suffix	Nominal Voltage [V]	Freq. [Hz]	Resistance at 20°C [Ω] (±1%)	Current consumption at inrush [A] (±5%)	Current consumption at holding [A] (±5%)	Power consumption at inrush (±5%) [VA]	Power consumption at holding (±5%) [VA]	Coil Code K1 and K12
A24	24	50	1,46	8	2	192	48	1902830
A48	48	- 50	5,84	4,4	1,1	204	51	1902831
A100	100V-50Hz		22.2	2,27	0,49	227	49	1002836
Allo	100V-60Hz		23,5	2,01	0,38	201	38	1902030
A110	110V-50Hz	50/60	32	1,84	0,46	192	48	1002832
	120V-60Hz	50/00	52	1,56	0,39	188	47	1902032
A 220	230V-50Hz		140	0,76	0,19	176	44	1002833
A230	240V-60Hz		140	0,6	0,15	144	36	1902033
F110	110	60	26	1,6	0,4	176	44	1902834
F220	220		106	0,8	0,2	180	45	1902835

8 - OVERALL AND MOUNTING DIMENSIONS FOR DC SOLENOID VALVES

9 - OVERALL AND MOUNTING DIMENSIONS FOR AC SOLENOIDS VALVES

10 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fixing takes place by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

11 - ELECTRIC CONNECTIONS

12 - ELECTRIC CONNECTORS

The valves are delivered without connector. Connectors for K1 connections (DIN 43650) can be ordered separately. See catalogue 49 000.

13 - MANUAL OVERRIDES

13.1 - Manual override, boot protected

13.2 - CH-DS3/11 Lever manual override (only for DC solenoid valve)

13.3 - CP-DS3/10 Push manual override (only for DC solenoid valve)

13.5 - CPK-DS3/10 Push manual override with mechanical retention (only for DC solenoid valve)

13.4 - CK-DS3/10 Knob manual override (only for DC solenoid valve)

When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

Spanner: 3 mm

Code: 3401150009

14 - SOFT-SHIFT VERSION FOR DC VALVE

14.1 - Identification code

This version enables hydraulic actuators to perform a smooth start and stop by reducing the speed of movement of the valve spool.

In this version, the S9 spool must be used instead of the S3 type.

The diagram on the side shows the operating limits of the spools available in the soft-shifting version, while the table shows the switching times.

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50° C.

The shifting time and characteristics curves are influenced by the viscosity (and thus by the temperature) of the operating fluid. Moreover, times can vary according to the flow rate and operating pressure values of the valve.

For correct operation of the soft-shifting ensure the solenoid tubes are always filled with oil. At this matter, we recommend to install a backpressure valve set at $1 \div 2$ bar on T line.

SPOOL	CURVE	TIMES [ms]		
		ENERGIZING	DE-ENERGIZING	
S1, S12	1	350	200 ÷ 300	
S2F	2	400	100 ÷ 250	
S4F	4	350	150 ÷ 300	
S9	1	400	200 ÷ 300	
TA12, TB12	3	180	200 ÷ 300	
TA23, TB23		300	200 ÷ 300	

15 - VERSION WITH UL CERTIFIED COILS

15.1 - Identification code

15.2 - UL file number

The UL database website provides informations about the certification, by entering the code MH29222 in the 'UL file number' field.

15.3 - Electrical features

(values ± 10%)

	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt [W]	Coil code
D24ULK1	24	19.2	1.25	30	1903341

NOTE: Valves with UL coils must be ordered complete. The UL coils are not interchangeable with those of standard valves.

15.4 - Overall and mounting dimensions

15.5 - Spare parts

UL certified coil: C22S3-D24ULK1/11 Solenoid tube : NBR TD22-DS3-UL/11N viton TD22-DS3-UL/11V Solenoid tube plunger: Locking ring: Seals : cod. 0119545 cod. 0119546 kit for standard DC valves

16 - HIGH CORROSION RESISTANCE VERSION

16.1 - identification code

16.2 - Corrosion resistance

This version features the zinc-nickel coating on all exposed metal parts of the valve, making it resistant to exposure to the salt spray for **600** hours (test performed according to UNI EN ISO 9227 and assessment test performed according to UNI EN ISO 10289).

16.3 - DC coils

The coils feature a zinc-nickel surface treatment.

The WK7D coil includes a suppressor diode of pulses for protection from voltage peaks during switching.

During the switching the diode significantly reduces the energy released by the winding, by limiting the voltage to 31.4V in the D12 coil and to 58.9 V in the D24 coil.

(values ±10%)

	Nominal	Resistance	Current	Power	Coil	code
	voltage [V]	at 20°C [Ω]	consumpt. [A]	consumpt [W]	WK1	WK7D
D12	12	4,4	2,72	32,7	1903050	1903400
D24	24	18,6	1,29	31	1903051	1903401

16.4 - Protection from atmospheric agents IEC 60529

The IP protection degree is guaranteed only with both valve and connectors correctly connected and installed.

connection type	electric connection protection	whole valve protection
WK1 DIN 43650	IP65	IP65
WK7D DEUTSCH DT04 male	IP65/IP67/IP69 IP69K*	IP65/IP67

(*) The IP69K protection degree is not taken into account in IEC 60529 but it is included in ISO 20653.

17- PORT RESTRICTORS

Port restrictors are recommended if flow variations occur which exceed the valve performance limit during the switching processes, or for circuit dampening.

The port restrictor plugs can be ordered separately with the part numbers shown at left.

Ø (mm)	part number
blank	0144162
0.6	0144163
0.8	0144033
1	0144034

Ø (mm)	part number
1.2	0144035
1.5	0144036
1.8	0144164
2	0144165

18 - SPARE PARTS FOR DC SOLENOID VALVE

19 - SPARE PARTS FOR AC SOLENOID VALVE

20 - SUBPLATES

(see catalogue 51 000)

Type PMMD-Al3G with rear ports 3/8" BSP

Type PMMD-AL3G with side ports 3/8" BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING SURFACE

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

,	,	'		
Maximum operating processory		CC	CA	
- ports P - A - B - port T	bar	280 250 160		
Maximum flow rate	l/min	5	0	
Pressure drop ∆p-Q	see	paragraph 4		
Operating limits	see paragraph 5			
Electrical features	see paragraph 7			
Electrical connections	see paragraph 12			
Ambient temperature range	°C	°C -20 /		
Fluid temperature range	°C	+80		
Fluid viscosity range	cSt 10 ÷ 400			
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	2	5	
Masse: single solenoid valve double solenoid valve	kg	1,	,1 ,4	

DL3 SOLENOID OPERATED DIRECTIONAL CONTROL VALVE COMPACT VERSION

SUBPLATE MOUNTING ISO 4401-03 (CETOP 03)

p max **280** bar **Q** max **50** l/min

OPERATING PRINCIPLE

- Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401-03 (CETOP RP 121H) standards.
- Compact design with reduced solenoid dimensions, suitable for mini-power packs and mobile and agricultural applications.
- The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see paragraph

 The valve is supplied with 3 or 4 way designs and with several interchangeable spools with different porting arrangements.

— The valve is available with DC or AC current solenoids and with several types of electrical connections to cover various installation requirements (see paragraphs 7, 11 and 12).

— The DC valve comes with boot protected manual override which ensures a protection degree IP69K with connections type K7 and K8.

— It is available also with zinc-nickel surface treatment, that ensures a salt spray resistance up to 600 hours.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

4 - PRESSURE DROPS $\triangle P-Q$

(obtained with viscosity of 36 cSt at 50 °C)

		FLOW DIRECTIONS						
SPOOL	P→A	P→B	A→T	B→T	P→T			
		CURVE	S ON G	RAPHS	5			
S1	1	1	1	1	-			
S2	1	1	2	2	3			
S3	3	3	2	2	-			
S4	4	4	4	4	5			
RK	1	1	1	1	-			
ТА	3	3	3	3	-			

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values indicated in the graphs are relevant to the standard solenoid valve.

The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

SPOOL	CURVE
S1, TA	1
S2	2
S3	3
S4	4
RK	5

ENERGIZED VALVE

SPOOL	CURVE
S1, TA	1
S2	2
S3	3
S4	4
RK	5

6 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C .

	TIMES (±10%) [ms]			
SUPPLY	ENERGIZING	DE-ENERGIZING		
DC	25 ÷ 75	15 ÷ 25		
AC	10 ÷ 25	15 ÷ 30		

7 - ELECTRICAL FEATURES

7.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated +/- 90°, to suit the available space.

The interchangeability of coils of different voltages is allowed within the same type of supply current, alternating or direct.

Protection from atmospheric agents CEI EN 60529

Connector	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K2 AMP JUNIOR	x	x (*)	
K4 outgoing cable	x	x	
K7 DEUTSCH DT04 male	x	x	x (*)
K8 AMP SUPER SEAL	х	x	x (*)

(*) The protection degree is guaranteed only with the connector correctly connected and installed

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95 EC
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation:	class H class H

NOTE: In order to further reduce the emissions, with DC supply, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

7.2 - DC valve - Current and power consumption

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm's law: V = R x I

"R" coil must be used when the valve is fed with AC power supply subsequently rectified by means of rectifier bridge, externally or incorporated in the "D" type connector (see cat. 49 000).

The table shows current and power consumption values for CC and RC coil types.

Coils for direct current (values ±5%)

	Nominal voltage IV1	Resistance at 20°C [Ω]	Current consumption [A]	Power co	nsumption	К1	К2	Coil code K4	K7	K8
	[]	[]		[]						
D12	12	5,4	2,2	26,5		1902740	1902750	1902770	1902980	1903020
D24	24	20,7	1,16	27,8		1902741	1902751	1902771	1902981	1903021
D28	28	27,5	1,02	28,5		1902744				
D48	48	82	0,58	28		1902745				
R110	110	363	0,25		27,2	1902742				
R230	230	1640	0,11		26,4	1902743				

7.3 - AC valve - Current and power consumption

In alternating current energizing, an initial phase (maximum movement) is seen, during which the solenoid consumes elevated value currents (inrush current); the current values diminish during the plunger stroke until it reaches the minimum values (holding current) when the plunger reaches the stroke end. The table shows the values of absorption at the inrush and at holding.

Coils f	for all	ternating	current	values	±10%)
					, . ,

	Nominal voltage [V]	Freq. [Hz]	Resistance at 20°C [Ω]	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil code K1
A24	24		2,7	4,5	1,47	109,2	35,3	1903190
A110	110	50	73,4	1,0	0,31	107,8	34,1	1903192
A230	230		320	0,5	0,16	112,7	36,8	1903193

8 - DL3 DC OVERALL AND MOUNTING DIMENSIONS

41 211/215 ED

9 - DL3 AC OVERALL AND MOUNTING DIMENSIONS

10 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fitting takes place by means of screws or tie rods, fixing the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

12 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without connectors. For coils with standard electrical connection K1 type (DIN 43650), the connectors can be ordered separately. See catalogue 49 000. We do not have connectors for connections K2, K7 and K8.

13 - OPTIONAL MANUAL OVERRIDES

13.1 - Boot protected manual override

On the DC version the boot override is integrated in the coil locking ring, as standard.

On the AC version, however, the boot override can be ordered by entering the code CM in the identification code at par. 1, or is available as option to be ordered separately: code **3401210001**.

13.2 - Knob manual override

Available only for DC version

When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

Spanner: 2.5 mm

The knob override can be ordered by entering the code CK in the identification code at par. 1, or is available as option to be ordered separately: code **3401210002**.

14 - SPARE PARTS FOR DC SOLENOID VALVE

15 - SPARE PARTS FOR AC SOLENOID VALVE

16 - SUBPLATES

(see catalogue 51 000)

Type PMMD-AL3G with side ports P, T, A, B port threading: 3/8" BSP	Type PMMD-AI3G with rear ports
P, T, A, B port threading: 3/8" BSP	Type PMMD-AL3G with side ports
	P, T, A, B port threading: 3/8" BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING SURFACE

PERFORMANCES

(with mineral oil of viscosity of 36 cSt at 50°C)

Maximum operating pressure: - ports P - A - B - port T	bar	280 210	
Maximum flow rate	l/min	50	
Pressure drop ∆p-Q	see paragraph 4		
Operating limits	see paragraph 5		
Electrical features	see paragraph 7		
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass: single solenoid valve double solenoid valve	kg	1,5 2	

DL3B 8 WATT SOLENOID OPERATED DIRECTIONAL CONTROL VALVE SERIES 10

SUBPLATE MOUNTING ISO 4401-03 (CETOP 03)

p max **280** bar **Q** max **60** l/min

OPERATING PRINCIPLE

- 8 watt direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401-03 (CETOP RP 121H) standards.
- Compact design with reduced solenoid dimensions, suitable for mini-power packs and mobile and agricultural applications.
- The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see par. 7).

— The valve is supplied with 4 way designs and with several interchangeable spools with different porting arrangements.

— It is available also with zinc-nickel surface treatment, that ensures a salt spray resistance up to 240 hours.

- The valve is available with DC current solenoids with 24 V power supply.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

4 - PRESSURE DROPS $\triangle P-Q$

(obtained with viscosity of 36 cSt at 50 $^\circ\text{C})$

ENERGIZED VALVE

	FLOW DIRECTIONS			
SPOOL	P→A	P→B	A→T	B→T
	CU	RVES (ON GRA	ΡH
S1	2	3	3	2
S2	1	1	1	1
S3	3	3	1	1
S4	4	4	4	4
RK	3	3	3	3
TA, TB	3	3	3	3
TA02, TB02	1	1	1	1

For the pressure drop with a de-energized valve $P \rightarrow T$ of the spools S2 and S4 refer to the curve 3; for the spool S4 refer to the curve 4.

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

The limits for TA02 and TA spools refer to the 4-way operation. The operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow are shown in the chart on the next page.

SPOOL	CURVE
S1	1
S2	1
S3	3
S4	4
TA, TB	5
TA02, TB02	2
RK	4

6 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50° C.

TIMES (±10%) [ms]		
ENERGIZING	DE-ENERGIZING	
25 ÷ 75	15 ÷ 25	

7 - ELECTRICAL FEATURES

7.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom		
MAX SWITCH ON FREQUENCY	7.000 ins/hr		
DUTY CYCLE	100%		
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/EC		
LOW VOLTAGE	In compliance with 2006/95 EC		
CLASS OF PROTECTION : Atmospheric agents IEC EN 60529 Coil insulation (VDE 0580) Impregnation	IP 65 (NOTE) class H class F		

NOTE: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

7.2 - Current and absorbed power for solenoid valve

The table shows current and power consumption values relevant to the 24 VDC coil.

Coil for direct current (values ±10%)

	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt [W]	Coil code
DL24	24	64.6	0.37	8.92	1903291

8 - ELECTRIC CONNECTORS

Connectors must be ordered separately. See catalogue 49 000.
9 - DL3B OVERALL AND MOUNTING DIMENSIONS

10 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fitting takes place by means of screws or tie rods, fixing the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

11 - SPARE PARTS FOR SOLENOID VALVE

12 - SUBPLATES

(see catalogue 51 000)

Type PMMD-AI3G with rear ports 3/8" BSP	
Type PMMD-AL3G with side ports 3/8" BSP	

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING SURFACE

PERFORMANCES

(obtained with mineral oil with viscosity of 170 SUS at 50°C)

Maximum operating pressure: - P - A - B ports - T port	psi	5000 2300	
Maximum flowrate	GPM	20	
Electrical connection	ction junction box		
Ambient temperature range	°F	-4 / +122	
Fluid temperature range	°F	-24 / +176	
Fluid viscosity range	SUS	60 ÷ 1900	
Fluid contamination degree	according to ISO 4406:1999 class 20/18/1		
Recommended viscosity	SUS	120	
Mass: single solenoid valve dual solenoid valve	lbs	3.15 4.15	

DS3JB SOLENOID OPERATED DIRECTIONAL CONTROL VALVE

AC SERIES 10

SUBPLATE MOUNTING NFPA D03 (ISO 4401-03)

p max 5000 psi (350 bar)
 Q max 20 GPM (76 l/min)

OPERATING PRINCIPLE

- Direct acting, subplate mounting directional control valve, with mounting surface according to NFPA D03 standards.
- The valve is supplied with 3 or 4 ports designs, with 2 or 3 positions with a wide range of spools.
- The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see par. 7).
- The valve is equipped with junction box to be wired.
- The valve is available with AC solenoids.
- A boot protected manual override is available for applications in tropical climate.

1 - IDENTIFICATION CODE

2 - SPOOL TYPE

Other spools are available on request.		
Type S *: 2 solenoids - 3 positions with spring centering	Type SA*:Type SB*:- 3 positions1 solenoid side A1 solenoid side Bcentering2 positions (central + external)2 positions (central + external)with spring centeringwith spring centeringwith spring center	
a <mark>☆ a D b☆</mark> b P T	a <mark>r a D</mark> P T	
	SA1	
	SA2	SB2
	SA3	SB3
		SB4 MELLE
	Type TA : 1 solenoid side A	Type TB : 1 solenoid side B
	2 external positions with return spring	2 external positions with return spring
Type RK : 2 solenoids - 2 positions with mechanical retention A B $a \square D \square b$ P T $b \square b$		

DS3JB SERIES 10

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 176 °F causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE DROPS Δp -Q

(obtained with viscosity 170 SUS at 122 °F)

When spool S10 is used for regenerative circuits, pressure drops between A and B lines are described by curve 4 .

PRESSURE DROPS WITH VALVE IN ENERGIZED POSITION

	FLOW DIRECTION			
SPOOL TYPE	P→A	P→B	A→T	B→T
	Cl	JRVES C	ON GRAF	۳H
S1, SA1, SB1	2	2	3	3
S2, SA2, SB2	1	1	3	3
S3, SA3, SB3	3	3	1	1
S4, SA4, SB4	4	4	4	4
S9	2	2	3	3
S10	1	3	1	3
ТА, ТВ	3	3	3	3
TA02, TB02	2	2	2	2
RK	2	2	2	2

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

		FLOV	V DIREC	TION	
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T
		CURV	ES ON G	GRAPH	
S2, SA2, SB2					2
S3, SA3, SB3			3	3	
S4, SA4, SB4					3
S10	3	3			

5 - SWITCHING TIMES

The values indicated are obtained according to ISO 6403 standard. They refer to an S1 solenoid valve for Q = 10 GPM, p = 2,000 psi working with mineral oil at a temperature of 122 °F, a viscosity of 170 SUS and with PA and BT connections.

The energizing times are obtained at the time the spool switches over. The de-energizing times are measured at the time pressure variation occurs on the line.

	ENERGIZING	DE-ENERGIZING
TIMES (±10%) [ms]	10 ÷ 25	15 ÷ 40

6 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure.

The values have been obtained according to ISO 6403 standard, with mineral oil, viscosity 170 SUS, temperature 122 °F and filtration according to ISO 4406:1999 class 18/16/13, with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The limits for TA02 and TA spools refer to the 4-port operation. The operating limits can be considerably reduced if a 4-port valve is used as 3-port valve with port A or B plugged or without flow.

Valves fed at 110 V / 60 Hz may have slightly lower performance limits than those showed in the diagram.

SPOOL	CUF	₹VE	
3F00L	P→A	P→B	
S1,SA1,SB1	1	1	
S2, SA2, SB2	2	2	
S3, SA3, SB3	3	3	
S4, SA4, SB4	1	1	
S9	4	4	
S10	1	1	
TA, TB	5	5	
TA02, TB02	6	6	
RK	7	7	

7 - ELECTRICAL FEATURES

7.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded nut.

The interchangeability of coils of different voltages is allowed.

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION : Class of protection IEC 60529 Coil insulation (VDE 0580) Impregnation:	IP65 class H class H

7.2 Current and absorbed power

The table shows current and power consumption values at inrush and at holding. In alternating current energizing, an initial phase (maximum movement) is seen, during which the solenoid consumes elevated value currents (inrush current); the current values diminish during the plunger stroke until it reaches the minimum values (holding current) when the plunger reaches the stroke end.

Coils (values ± 10%)

Suffix	Nominal Voltage [V]	Frequency [Hz]	Resistance at 20°C [Ohm]	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil Code
C20 6-A120-60K6/10	110		27.5	1.8	0.36	198	39.6	1002820
C20.0-A120-001(0/10	120	60	21.5	2	0.43	240	51.6	1302020
C20 6-A240-60K6/10	220		110	0.86	0.17	189.2	37.4	1002821
C20.0-A240-00R0/10	240		110	0.98	0.2	235.2	48	1902021

8 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fixing takes place by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

0.8 For use in tropicat climate, we recommend the use of boot (CM option, see secton 11) to protect the

Surface finishing

0.01/100

9 - JUNCTION BOX

manual override.

10 - OVERALL AND MOUNTING DIMENSIONS

11 - CM MANUAL OVERRIDE

12 - SPARE PARTS

13 - FASTENING BOLTS

4 SHC M5x30 - ISO 4762 (or 10-24 UNC - 2Bx1.25) Tightening torque 4-5 lbs.ft

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 251/116 ED

MOUNTING INTERFACE

PERFORMANCES

(obtained with mineral oil with viscosity of 36 cSt at 50 $^{\circ}\mathrm{C}$)

bar	350 210 140
l/min	50
°C	-20 / +50
°C	-20 / +80
cSt	10 ÷ 400
According to ISO 4406:1999 class 20/*	
cSt	25
kg	2 1,5
	bar I/min °C °C cSt According to cSt kg

MDS3 SOLENOID OPERATED SWITCHING VALVE SERIES 10

MODULAR VERSION ISO 4401-03

p max 350 bar
Q max 50 l/min

OPERATING PRINCIPLE

- The MDS3 valve is used to switch multiple flow directions, or to select pressure values. An application example can be seen here below.
- The straight flow paths pass the valve body and due to this particular design feature, the MDS3 can be assembled with all ISO 4401-03 modular valves.
- The special connection of the valve in parallel to the P T
 A B lines of the circuit allows easy construction of differents hydraulic configurations, reducing pressure drops to a minimum.

APPLICATION EXAMPLE

1 - IDENTIFICATION CODE

2 - SPOOLS TYPES

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE DROPS Δp -Q

	FL	OW DIF	RECTIO	NS
SPOOL	P→A	P→B	A→T	B→T
	CUI	RVES O	N GRA	PHS
S1, S12	2	2	3	3
S3 (*)	2	2	1	1
RSA1	2			2
ТА	3	4	4	4
TA31			3	

(*) the limit for central position of S3 spool is 25/lmin (curve 5)

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values indicated in the graphs are relevant to the standard solenoid valve.

The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

6 - SWITCHING TIMES

The values indicated are obtained, according to ISO 6403 standards, with mineral oil viscosity 36 cSt at 50°C.

	TIMES (±10%) [ms]				
	ENERGIZING DE-ENERGIZIN				
DC	80 -150	15 - 25			
AC	25 - 50	20 - 40			

8 - ELECTRICAL FEATURES

8.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated to suit the available space.

Protection from atmospheric agents EN 60529

Connector	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K7 DEUTSCH DT04 male	x	x	x (*)

 $(\ensuremath{^*})$ The protection degree is guaranteed only with the connector correctly connected and installed

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	
DC valve	18.000 ins/hr
AC valve	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95 EC
CLASS OF PROTECTION :	
Coil insulation (VDE 0580)	class H
Impregnation	class F

NOTE: In order to further reduce the emissions is recommended the use of type H connectors. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

8.2 - Current and absorbed power for DC solenoid valve

The table shows current and power consumption values relevant to the DC coils.

Using connectors type "D" (see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils (starting from 48V voltage) with alternating current (50 or 60 Hz), considering a reduction of the operating limits .

Available DC coils (values ±5%)

	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt [W]	Coil o K1	code K7
D12	12	4,4	2,72	32,6	1903080	1902940
D24	24	18,6	1,29	31	1903081	1902941
D28	28	26	1,11	31	1903082	
D48	48	78,6	0,61	29,3	1903083	
D110	110	436	0,26	28,6	1903464	
D220	220	1758	0,13	28,6	1903465	

8.3 - Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Available AC coils (values ± 5%)

Suffix	Nominal Voltage	Freq.	Resistance at 20°C	Current consumption at inrush	Current consumption at holding	Power consumption at inrush	Power consumption at holding	Coil Code
	[V]	[Hz]	[Ω] (±1%)	[A]	[A]	[VA]	[VA]	K1
A24	24	50	0.88	8.7	2.35	209	56.5	1902660
A48	48	50	3.2	4.5	1.25	216	60	1902661
A110	110V-50Hz		17.5	1.9	0.48	209	52.8	1002677
AIIU	120V-60Hz	50/60	17.5	1.8	0.45	216	54	1902077
A 220	220V-50Hz	30/00	70	0.95	0.23	200	50.6	1002678
A220 240V-60Hz		10	0.87	0.21	209	50.4	1902070	

8 - DC VALVE - OVERALL AND MOUNTING DIMENSIONS

9 - DC VALVE - OVERALL AND MOUNTING DIMENSIONS

10 - INSTALLATION

The valve can be mounted in any position. Valve fixing takes place by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity and/or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

11 - ELECTRIC CONNECTORS

The solenoid valves are supplied without connectors. For coils with standard electrical connection K1 type (DIN 43650) the connectors can be ordered separately: see catalogue 49 000.

12 - MANUAL OVERRIDES

The standard valve has solenoids whose pin for the manual operation is integrated in the tube. The operation of this control must be executed with a suitable tool, minding not to damage the sliding surface.

Three different manual override versions are available upon request: **CM**: boot protected; **CP**: Push (for DC valves only); **CPK**: Push manual override with mechanical retention (for DC valves only).

For more information about these manual overrides, see the catalogue 41150.

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 270/216 ED

MDF3 SHUT-OFF SOLENOID VALVE SERIES 10

MODULAR VERSION ISO 4401-03

p max 350 bar Q max 50 l/min

MOUNTING INTERFACE

SPOOL TYPE

(see hydraulic symbols table)

Type "A": it is used to unload the lines, with the valve at rest. Type "C": it is used to block the lines, with the valve at rest.

PERFORMANCE RATINGS

(working with mineral oil of viscosity of 36 cSt at 50°C)

Maximum operating pressure	bar	350	
Maximum flow rate	l/min	50	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass	kg	1,5	

OPERATING PRINCIPLE

- Shut-off solenoid valve, direct-acting, available in two versions at rest: with lines blocked and with unloading lines.
- It is used with directional control servovalves to guarantee the circuit's safety if there is a power failure.
- Wet armature solenoids with interchangeable coils are used (for further information see par. 6).

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - SWITCHING TIMES

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50° C.

TIMES				
ENERGIZING	DE-ENERGIZING			
60 ÷ 90 ms	20 ÷ 50 ms			

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The values have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/15.

6 - ELECTRICAL FEATURES

6.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated, to suit the available space.

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

NOTE 2: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

- Curve related to the de-energizing of the solenoid valve Curve related to the energizing of the solenoid valve, without any flow in A and B lines
- 2) Curve related to the energizing of the solenoid valve, with flow in A and B lines

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	18.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION: Atmospheric agents (IEC EN 60529) Coil insulation (VDE 0580) Impregnation	IP 65 (NOTE 2) class H class F

6.2 - Current and absorbed power

The table shows current and power consumption values relevant to the different coil types for DC.

Using connectors type "D" (see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils (starting from 48V voltage) with alternating current (50 or 60 Hz), considering a reduction of the operating limitsof about 5-10%.

Coils for direct current (values ± 5%)

Suffix	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt. [W]	Coil code
D12	12	4,4	2,72	32,6	1903080
D24	24	18,6	1,29	31	1903081
D48	48	78,6	0,61	29,3	1903083
D110	110	436	0,26	28,6	1903464
D220	220	1758	0,13	28,6	1903465

7 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without the connectors. They must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

MOUNTING SURFACE

PERFORMANCE RATINGS (with mineral oil of viscosity of 36 cSt at 50°C)

		DC	AC	
Maximum operating pressure				
P - A - B ports	bar	32	20	
T port - standard version T port - version with Y port (ext.drain)		210 320	140	
Maximum flow rate	l/min	150	120	
Pressure drops ∆p-Q		see paragraph 4		
Operating limits		see paragraph 6		
Electrical features		see paragraph 7		
Electrical connections		see paragraph 11		
Ambient temperature range °C -20			+50	
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	St 10 ÷ 400		
Fluid contamination degree		accord ISO 440 class 20	ling to 06:1999 0/18/15	
Recommended viscosity	cSt	25		
Mass: single solenoid valve double solenoid valve	kg	4,5 6,1	3,6 4,3	

DS5 SOLENOID OPERATED DIRECTIONAL CONTROL VALVE SERIES 12

SUBPLATE MOUNTING ISO 4401-05

p max **320** bar **Q** max **150** l/min

OPERATING PRINCIPLE

- Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401.
- The valve is supplied with 3 or 4 way designs and with several interchangeable spools with different porting arrangements.

— The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (see paragraph 7).

— The valve is available with DC or AC solenoids. DC solenoids can also be fed with AC power supply, by using connectors with a built-in rectifier bridge (see paragraph 7.2).

— The DS5 directional valve direct current version is available in the following special versions:

- version with Y external subplate drain port, (see par. 13.1 and 13.2).

- version with soft-shifting
- (see par. 13.3 and 13.4)
- version with adjustable "soft-shift" device (see paragraph 13.5)

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

D

3 - SPOOL TYPE

2 positions (central + external) with spring centering

Type TA: 1 solenoid side A 2 external positions with return spring A B $a \square b$ P TTA $\Box \square T \square b$ $T \square T \square b$ TA $\Box \square T \square T$

та23 🖂

Type **TB**: 1 solenoid side B 2 external positions with return spring

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification, feasibility and operating limits.

4 - PRESSURE DROPS Δp -Q (obtained with viscosity 36 cSt at 50 °C)

PRESSURE DROPS WITH VALVE ENERGIZED

DS5

SERIES 12

	FLOW DIRECTION				
SPOOL TYPE	P-A	P-B	A-T	B-T	
	С	URVES	DN GRAF	ъ	
S1, SA1, SB1	2	2	1	1	
S2, SA2, SB2	3	3	1	1	
S3, SA3, SB3	3	3	2	2	
S4, SA4, SB4	1	1	2	2	
S5	2	1	1	1	
S6, S11	3	3	2	2	
S7, S8	1	1	2	2	
S9	3	3	2	2	
S10	1	1	3	3	
S12	2	2	1	1	
S17, S19	2	2	1	1	
S18	1	2	1	1	
S20, S22	2	4	4	-	
S21, S23	4	2	-	4	
TA, TB	3	3	2	2	
TA02, TB02	3	3	2	2	
TA23, TB23	4	4			
RK	3	3	2	2	
RK02	3	3	2	2	
RK1, 1RK	3	3	2	2	

For pressure drops between A and B lines of S10, S20, S21, S22 spools which are used in the regenerative diagram, refer to curve 5.

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION				
SPOOL TYPE	P-A	P-B	A-T	B-T	P-T
		CURV	/ES ON G	RAPH	
S2, SA2, SB2					6
S3, SA3, SB3			7	7	
S4, SA4, SB4					6
S5		3			
S6				7	
S7					6
S8					6
S10	3	3			
S11			7		
S18	3				
S22			7	7	

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

	TIMES [ms]			
COLLIFE	ENERGIZING	-ENERGIZING		
DC	100 ÷ 150 ms	20 ÷ 50 ms		
AC	15 ÷ 30 ms	20 ÷ 50 ms		

6 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The values have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13 and are relevant to the standard solenoid valve.

The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

For flow and pressure performances of soft-shifting configuration (options F) see par. 13.4.

Flow and pressure performances of adjustable soft-shifting device configurations (options S, par. 13.5) are influenced by the set shifting time.

DC SOLENOID VALVE

SPOOL	CUI	RVE
SPOOL	P→A	P→B
S1, SA1, SB1	1	1
S2, SA2, SB2	1	1
S3, SA3, SB3	2	2
S4, SA4, SB4	3	3
S5	1	1
S6	2	1
S7	3	3
S8	3	3
S9	1	1
S10	3	3
S11	1	2
S12	1	1

SPOOL	CUI	RVE
SPOOL	P→A	Р→В
S17	1	4
S18	1	1
S19	4	1
S20	8*	7
S21	7	8*
S22	6*	6
S23	6	6*
TA, TB	5	5
TA02, TB02	4	4
TA23, TB23	1	1
RK	1	1
RK02	1	1
RK1, 1RK	1	1

* Performance obtained for a valve with A and B lines connected the one to the piston-side chamber and the other to the rod-side chamber of a double-acting cylinder with area ratio 2:1.

p [bar] 2,7 350 1 320 9 8 Δ 250 52 5 6 200 150 100 50 8 7 0 30 60 90 120 150 Q [l/min]

SBOOI	CUP	RVE
SPOOL	P→A	P→B
S1, SA1, SB1	1	1
S2, SA2, SB2	2	2
S3, SA3, SB3	2	2
S4, SA4, SB4	4	4
S5	1	1
S6	2	1
S7	3	3
S8	3	3
S9	2	2
S10	1	1
S11	1	2
S12	1	1

SPOOL	CUI	RVE
SFOOL	P→A	P→B
S17	1	5
S18	1	1
S19	5	1
S20	9*	8
S21	8	9
S22	7	7
S23	7	7
TA, TB	1	1
TA02, TB02	5	5
TA23, TB23	1	1
RK	1	1
RK02	1	1
RK1, 1RK	1	1

AC SOLENOID VALVE

7 - ELECTRICAL FEATURES

7.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated, to suit the available space.

Protection from atmospheric agents CEI EN 60529

Plug-in type	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K2 AMP JUNIOR	x	x (*)	
K7 DEUTSCH DT04 male	x	х	x (*)

(*) The protection degree is guaranteed only with the connector correctly connected and installed

7.2 - Current and absorbed power for DC solenoid valve

The table shows current and power consumption values relevant to the coil types for DC.

Using connectors type "D" (see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils (starting from 48V voltage) with alternating current (50 or 60 Hz).

However, when supplying the valve with rectified current, it is necessary to consider a reduction of the operating limits by 15-20% approx.

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	15.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION: Coil insulation (VDE 0580) Impregnation:	class H class F

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see CAT. 49 000).

Coils for direct current (values ± 5%)

Suffix	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt . [W]	K1	Coil code K2	K7
D12	12	3,2	3,75	45	1903200	1903210	1903220
D24	24	12	2	48	1903201	1903211	1903221
D28	28	16,2	1,72	48	1903202		
D48	48	49	0,98	47	1903203		
D110	110	250	0,44	48	1903204		
D125	125	338	0,37	46	1903206		
D220	220	1050	0,21	47	1903205		

7.3 - Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Coils for alternating current (values ± 5%)

Suffix	Nominal voltage [V]	Frequency [Hz]	Resistance at 20°C [ohm]	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil code
A24	24	50	0,53	25	3,96	600	95	1902890
A48	48	50	2,09	12,5	2,3	600	110	1902891
A110	110V-50Hz		10,9	5,2	0,96	572	105	1002002
ATTO	120V-60Hz	50/60	10,9	5,2	0,89	572	105	1902092
A 220	230V-50Hz	50/60	52,7	2,8	0,46	644	105	1002002
AZJU	240V-60Hz		52,7	2,8	0,38	644	105	1902093
F110	110	60	8,80	5,2	0,95	572	105	1902894
F220	220	00	35,2	2,7	0,48	594	105	1902895

8 - OVERALL AND MOUNTING DIMENSIONS FOR DC SOLENOID VALVES

9 - OVERALL AND MOUNTING DIMENSIONS FOR AC SOLENOID VALVES

10 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal. Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

11 - ELECTRIC CONNECTIONS

12 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without connectors. For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see cat. 49 000. For K2 and K7 connection type the related connectors are not available.

13 - SPECIAL VERSIONS FOR DC SOLENOID VALVE

13.1 - Identification code for external drain version

13.2 - Subplate external drain port (option Y)

This version allows the operation with pressures up to 320 bar on the valve T port.

It is a drain port Y realized on the valve mounting interface in compliance with ISO 4401-05-05-0-05. The Y port is connected with the solenoid chamber: in this way the tubes are not stressed by the pressure operating on the valve T port.

13.3- Identification code for soft-shifting versions

13.4 - Fixed restrictor for soft-shifting (option F)

This version enables hydraulic actuators to perform a smooth start and stop by reducing the speed of movement of the valve spool.

The diagram on the side shows the operating limits of the spools available in the soft-shifting version (Note: for this version, the S9 spool must be used instead of the S3 one). The table on the side shows the switching times. The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

The shifting time and characteristics curves are influenced by the viscosity (and thus by the temperature) of the operating fluid. Moreover, times can vary according to the flow rate and operating pressure values of the valve.

SPOOL TYPE	CURVE		TIMES		
	P-A	P-B	ENERGIZING	DE-ENERGIZING	
S1, S12	1	1	300 ÷ 500	300 ÷ 500	
S2	2	2	450	200 ÷ 300	
S4, S7, S8	3	3	400	400 ÷ 200	
S9	1	1	300 ÷ 500	300 ÷ 500	
TA, TB	2	2	300 ÷ 400	300 ÷ 400	
TA02, TB02	2	2	400	200 ÷ 300	

13.5 - Directional solenoid valve with adjustable "soft-shifting" device (option S)

This solenoid valve is supplied with a suitable device, adjustable by the user, which enables the control of the valve spool shifting time. In this way the hydraulic actuators can perform smooth movements, by controlling the valve switching time according to the machine cycle and the inertia of the moving parts.

NOTE: during the first start-up the valve body must be filled with the operating fluid through the tap (1).

14 - MANUAL OVERRIDES FOR DC SOLENOID VALVES

14.1 - CM - Manual override, boot protected

14.2 - CK-DS5/10 Knob manual override

the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

Spanner: 3 mm

Code: 3401150003

15 - SPARE PARTS FOR DC SOLENOID VALVE

16 - SPARE PARTS FOR AC SOLENOID VALVE

17 - SUBPLATES (see catalogue 51 000)

Type PMD4-AI4G with rear ports 1/2" BSP
Type PMD4-AL4G with side ports 1/2" BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 320/110 ED

MOUNTING INTERFACE

Maximum operating pressure Ports P - A - B Port T	psi	4600 2000	
Maximum flow rate	GPM	32	
Pressure drop ∆p-Q	see paragraph 4		
Operating limits	see p	aragraph 6	
Electrical features	see p	aragraph 7	
Electrical connections	junction box		
Ambient temperature range	°F	-4 / +125	
Fluid temperature range	°F	-4 / +175	
Fluid viscosity range	cSt	10 - 400	
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Masse: single solenoid valve double solenoide valve	lbs	5.5 7.5	

DS5JB SOLENOID OPERATED DIRECTIONAL CONTROL VALVE

ALTERNATING CURRENT SERIES 10

NFPA D05 (ISO 4401-05 / CETOP 05)

p max 4600 psi Q max 32 GPM

OPERATING PRINCIPLE

 Direct acting, subplate mounting directional control valve, with mounting surface according to NFPA D05 standard.

— The valve body (1) is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids (2) with easily removable interchangeable coils (3) are used (for further information on solenoids see par. 7). It is supplied with junction box (5) for the electrical connection.

- The valve is supplied with 3 or 4 way designs and with several interchangeable spools (4) with different porting arrangements.
- The valve is available with AC solenoids.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 175 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.
D

DS5JB SERIES 10

3 - CONFIGURATIONS

DS5JB SERIES 10

4 - PRESSURE DROPS Δp -Q (obtained with viscosity 170 SSU at 120 °F)

PRESSURE I	DROPS	WITH	VALVE	ENERG	ZED
------------	-------	------	-------	-------	-----

	FLOW DIRECTION					
SPOOL TYPE	P-A	P-B	A-T	B-T		
	CU	RVES O	N GRAPH	ł		
S1, SA1, SB1	2	2	1	1		
S2, SA2, SB2	3	3	1	1		
S3, SA3, SB3	3	3	2	2		
S4, SA4, SB4	1	1	2	2		
S5	2	1	1	1		
S6	3	3	2	2		
S7	1	1	2	2		
S8	1	1	2	2		
S9	3	3	2	2		
S10	1	1	1	1		
S11	3	3	2	2		
S18	1	2	2	2		
TA, TB	3	3	2	2		
TA02, TB 02	3	3	2	2		
TA23, TB23	4	4				
RK	3	3	2	2		

	FLOW DIRECTION				
SPOOL TYPE	P-A	P-B	A-T	B-T	P-T
		CUR\	/ES ON G	RAPH	
S2, SA2, SB2					5
S3, SA3, SB3			6	6	
S4, SA4, SB4					5
S5		3			
S6					
S7					
S8					
S9					
S10					
S11					
S18	3				

5 - SWITCHING TIMES

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 170 SSUat 120°F.

	TIMES		
SOLENOID I TPE	ENERGIZING	DE-ENERGIZING	
AC	15 ÷ 25 ms	20 ÷ 50 ms	

6 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure with AC solenoids. The value have been obtained accordind to ISO 6403, with mineral oil, viscosity 170 SSU, temperature 120 °F.

SPOOL TYPE	CURVE		
	P-A	P-B	
S1,SA1,SB1	1	1	
S2, SA2, SB2	2	2	
S3, SA3, SB3	3	3	
S4, SA4, SB4	4	4	
S5	1	1	
S6	2	1	
S7	4	4	
S8	4	4	

SPOOL TYPE	CURVE		
	P-A	P-B	
S9	2	2	
S10	1	1	
S11	1	2	
S18	1	1	
TA, TB	1	1	
TA02, TB02	2	2	
TA23, TB23	1	1	
RK	1	1	

NOTE: The values indicated in the graphs are relevant to the standard solenoid valve. The operating limits can be considerably reduced if a 4-way valve is used as a 3-way valve with port A or B plugged or without flow.

7 - ELECTRICAL FEATURES

7.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring.

SUPPLY VOLTAGE FLUNCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	15.000 ins/hr
DUTY CYCLE	100%
Class of protection: Atmospheric agents (CEI EN 60529) Coil insulation (VDE 0580) Impregnation	IP 65 (see note 2) class H class F

Note: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

7.2 Current and absorbed power

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Coils (values ± 5%)

Type of coil	Frequency	Nominal voltage	Resistance at 20°C	Current consumption at inrush	Current consumption at holding	Power consumption at inrush	Power consumption at holding	Code
	[Hz]	[V]	[Ohm]	[A]	[A]	[VA]	[VA]	
C26-A120-60K6/10	60	120	9,65	4,5	0,88	540	105,6	1902840
C26-A220-60K6/10	60	220	29,6	2,5	0,46	550	101,2	1902841

8 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal. Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

Surface finishing				
0.0004/4				
63				
·/////////////////////////////////////				

DS5JB SERIES 10

9 - OVERALL AND MOUNTING DIMENSIONS

DS5JB SERIES 10

10 - SPARE PARTS FOR AC SOLENOID VALVE

11 - FASTENING BOLTS

4 bolts type 1/4-20 UNC-2Bx1 3/4 (12.9 class recommended) Tightening torque 70 lbs·inch

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

UNIVERSAL HYDRAULICS INT'L LTD

9337 Ravenna Road, Unit G, TWINSBURG, OHIO 44087 Phone +330-405-1800 - Fax +330-405-1801 E-mail: duplomatic@uhiltd.com

MOUNTING INTERFACE

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

	iscosity of 50 cot at 50	0)		
Maximum operating prossure:		CC	CA	
- ports P - A - B - port T	bar	320 210 160		
Maximum flow rate	l/min	125	100	
Pressure drop ∆p-Q	see	paragraph 4		
Operating limits	see	see paragraph 5		
Electrical features	see	see paragraph 7		
Electrical connections	D	DIN 43650		
Ambient temperature range	erature range °C -20 / +50		+50	
Fluid temperature range	°C	°C -20 / +80		
Fluid viscosity range	cSt	10 ÷	400	
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	2	5	
Masse: single solenoid valve double solenoid valve	kg	2, 3,	8 7	

DL5 SOLENOID OPERATED DIRECTIONAL CONTROL VALVE COMPACT VERSION SERIES 10

SUBPLATE MOUNTING ISO 4401-05

p max 320 barQ max 125 l/min

OPERATING PRINCIPLE

- Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401 standards.
- The valve is suitable for special applications, guaranteed by the reduced solenoid dimensions.

The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for

further information on solenoids see paragraph 7).

— The valve is supplied with 3 or 4 way designs and with several interchangeable spools with different porting arrangements.

— The valve is available with DC or AC current solenoids.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

4 - PRESSURE DROPS △p-Q (obtained with viscosity of 36 cSt at 50 °C)

ENERGIZED VALVE

	FLOW DIRECTIONS				
SPOOL	P→A	P→B	A→T	B→T	
	CUF	RVES O	N GRAI	PHS	
S1	1	1	2	2	
S2	1	1	1	1	
S3	1	1	1	1	
S4	4	4	4	4	
RK	2	2	2	2	
ТА	2	2	3	3	
TA02	2	2	1	1	
TA23	3	3	-	-	

DE-ENERGIZED VALVE

	FLOW DIRECTIONS				
SPOOL	A→T	$A \rightarrow T \qquad B \rightarrow T$			
	CURVES ON GRAPHS				
S2	-	-	1		
S3	5	5	-		
S4	-	-	1		

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values indicated in the graphs are relevant to the standard solenoid valve. The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

5.1 - Standard operating limits

SPOOL	CURVE
S1, S2, RK, TA, TA23	1
S9, TA02	2
S3	3
S4	4

SPOOL	CURVE
S1, RK, TA, TA02, TA23	1
S2	2
S3, S9	3
S4	4

5.2 - 4-way valve in 3-way operation

Operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow.

6 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

	TIMES (±10%) [ms]		
SUPPLY	ENERGIZING	DE-ENERGIZING	
DC	40 ÷ 90	20 ÷ 50	
AC	15 ÷ 30	20 ÷ 50	

7 - ELECTRICAL FEATURES

7.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded ring, and can be rotated +/- 90°, to suit the available space.

The interchangeability of coils of different voltages is allowed within the same type of supply current, alternating or direct.

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) - NOTE	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION : ATMOSPHERIC AGENTS EN 60529 Coil insulation (VDE 0580) Impregnation:	IP 65 (*) class H class H

(*) The protection degree is guaranteed only with the connector correctly connected and installed

NOTE: In order to further reduce the emissions, with DC supply, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

7.2 - DC valve - Current and power consumption

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm's law: V = R x I The table shows current and power consumption values for DC types.

	Resistance at 20°C [Ω] (±5%)	Current consumption [A] (±10%)	Power consumption [W] (±10%)	Coil code K1
C22L5-D12K1	2,9	4,14	50	1903150
C22L5-D24K1	12,3	1,95	47	1903151
C22L5-D28K1	16,8	1,67	47	1903152

7.3 - AC valve - Current and power consumption

In alternating current energizing, an initial phase (maximum movement) is seen, during which the solenoid consumes elevated value currents (inrush current); the current values diminish during the plunger stroke until it reaches the minimum values (holding current) when the plunger reaches the stroke end.

The table shows the values of absorption at the inrush and at holding.

	Freq. [VAC/Hz] (±10%)	Resistance at 20°C [Ω] (±5%)	Current consumption at inrush [A] (±10%)	Current consumption at holding [A] (±5%)	Power consumption at inrush (±10%) [VA]	Power consumption at holding (±10%) [VA]	Coil code K1
C26L5-A24K1	24/50	0,58	15,1	2,84	362,4	68,2	1931600
C26L5-A48K1	48/50	2,34	7,4	1,29	355,2	61,9	1931610
C26L5-A110K1	110/50-120/60	12,3	3,6 - 3,3	0,64 - 0,62	396	70,4 - 74,4	1931620
C26L5-A230K1	230/50-240/60	51,6	1,8 - 1,6	0,31 - 0,28	414 - 384	71,3 - 67,2	1931630

8 - ELECTRIC CONNECTORS

The solenoid valves are not supplied with connector. Connectors must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

9 - INSTALLATION

The configuration with centering and return springs can be mounted in any position.

Valve fitting takes place by means of screws or tie rods, fixing the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

10 - DL5 DC OVERALL AND MOUNTING DIMENSIONS

11 - DL5 AC OVERALL AND MOUNTING DIMENSIONS

12 - OPTIONAL MANUAL OVERRIDES

12.1 - Boot protected manual override (only for DC solenoid valve) It can be ordered by entering the code **CM** in the identification code at par. 1, or is available as option to be ordered separately: code **3401150006**.

12.2 - Knob manual override (only for DC solenoid valve)

When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

Spanner: 3 mm

The knob override can be ordered by entering the code CK in the identification code at par. 1, or is available as option to be ordered separately: code **3401150009.**

13 - SPARE PARTS FOR DC SOLENOID VALVE

14 - SPARE PARTS FOR AC SOLENOID VALVE

15 - FASTENING BOLTS AND SEALING RINGS

Single valve fastening: 4 SHC screws ISO 4762 M6x35

Tightening torque: 8 Nm

Sealing rings: N. 5 OR type 2050 (12.42x1.78) - 90 Shore

Type PMD4-AI4G with rear ports - port threading: 3/4" BSP Type PMD4-AL4G with side ports - port threading: 1/2" BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING SURFACE

PERFORMANCES	(with mineral oil of viscosity of 36 cSt at 50°C)

Maximum operating pressure: - ports P - A - B - port T	bar	320 210	
Maximum flow rate	l/min	125	
Pressure drop ∆p-Q	see pa	ragraph 4	
Operating limits	see pa	ragraph 6	
Electrical features	see paragraph 7		
Electrical connections	see paragraph 9		
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree according to ISO 44 class 20/18/		ISO 4406:1999 20/18/15	
Recommended viscosity	cSt	25	
Masse: single solenoid valve double solenoid valve	kg	2,4 3	

DL5B SOLENOID OPERATED DIRECTIONAL CONTROL VALVE COMPACT VERSION

SERIES 10

SUBPLATE MOUNTING ISO 4401-05 (CETOP 05)

p max 320 bar
 Q max 125 l/min

OPERATING PRINCIPLE

- Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401 (CETOP RP 121H) standards.
- The valve is suitable for special applications, guaranteed by the reduced solenoid dimensions.
- The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see paragraph 7).

— The valve is supplied with 3 or 4 way designs and with several interchangeable spools with different porting arrangements.

— The valve is available with DC current solenoids only.

— The valve is also available with zinc-nickel coating that ensures a salt spray resistance up to 600 hours.

— Alternative to the standard manual override there are push, boot, knob and mechanical detent devices.

1 - IDENTIFICATION CODE

1.1 - Standard version

1.2 - High corrosion resistance version

This version features the zinc-nickel coating on all exposed metal parts of the valve, making it resistant to exposure to the salt spray for **600** hours (test performed according to UNI EN ISO 9227 and assessment test performed according to UNI EN ISO 10289).

The coil are specific for this version, featuring a zinc-nickel surface treatment. The coil for DEUTSCH connector has a diode inside. Electrical features at paragraph 7.2

The boot manual override (CM) is installed as standard in order to protect the solenoid tube.

Follow the indentification code below to order it

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

4 - PRESSURE DROPS $\triangle P-Q$

(obtained with viscosity of 36 cSt at 50 $^\circ\text{C})$

ENERGIZED VALVE

	FLOW DIRECTIONS			
SPOOL	P→A	P→B	A→T	B→T
	CUF	RVES O	N GRAI	PHS
S1	1	1	2	2
S2	1	1	1	1
S3	1	1	1	1
S4	4	4	4	4
S9	1	1	1	1
RK	2	2	2	2
ТА	2	2	3	3
TA02	2	2	1	1
TA23	3	3	-	-

DE-ENERGIZED VALVE

	FLOW DIRECTIONS			
SPOOL	A→T	B→T	P→T	
	CURVES ON GRAPHS			
S2	-	-	1	
S3	5	5	-	
S4	-	-	1	

5 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50° C.

	TIMES (±	10%) [ms]
SUPPLY	ENERGIZING	DE-ENERGIZING
DC	70 ÷ 100	15 ÷ 20

6 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

The limits for TA02 and TA spools refer to the 4-way operation. The operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow are shown in the chart on the next page.

SPOOL	CURVE
S1, S2, RK	1
TA02	2
S3	3
S4	4
TA, TA23	5
S9	6

6.1 - 4-way valve in 3-way operation

Operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow.

SPOOL	CURVE
ТА	1
TA02	2

7 - ELECTRICAL FEATURES

7.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring. The coils are interchangeabile.

Protection from atmospheric agents EN 60529

Plug-in type	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K2 AMP JUNIOR	x	x (*)	
K7 DEUTSCH DT04 male	x	x	x (*)

(*) The protection degree is guaranteed only with the connector correctly connected and installed

NOTE: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation:	class H class F

7.2 Coils - current and power consumption

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm's law: V = R x I

The WK1 and WK7D are coils specific for the high corrosion resistance version of the valve.

The WK7D coil includes a suppressor diode of pulses for protection from voltage peaks during switching. During the switching the diode significantly reduces the energy released by the winding, by limiting the voltage to 31.4V in the D12 coil and to 58.9 V in the D24 coil.

(values ±10%)

	Nominal voltage	Resistance at 20°C	Current consumption	Power consumption			Coil code		
	[V]	[Ω]	[A]	[W]	K1	WK1	K2	K7	WK7D
D12	12	4,4	2,72	32,7	1903080	1903050	1903100	1902940	1903400
D24	24	18,6	1,29	31	1903081	1903051	1903101	1902941	1903401
D28	28	26	1,11	31	1903082			-	

8 - INSTALLATION

The configuration with centering and return springs can be mounted in any position.

Valve fitting takes place by means of screws or tie rods, fixing the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

9 - ELECTRIC CONNECTIONS

10 - ELECTRIC CONNECTORS

The valves are delivered without connector. Connectors for K1 connections (DIN 43650) can be ordered separately. See catalogue 49 000.

DL5B SERIES 10

11 - DL5B OVERALL AND MOUNTING DIMENSIONS

12 - MANUAL OVERRIDES

12.1 - CM manual override, boot protected

12.3 - CPK Push manual override with mechanical retention

12.2 - CP Push manual override

12.4 - CK Knob manual override

When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

Spanner: 3 mm

13 - SPARE PARTS FOR DC SOLENOID VALVE

14 - SUBPLATES

(See catalogue 51 000)

Type PMD4-Al4G with rear ports - threading: 3/4" BSP Type PMD4-AL4G with side ports - threading: 1/2" BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 351/116 ED

MDS5 SOLENOID OPERATED SWITCHING VALVE SERIES 10

MODULAR VERSION ISO 4401-05

p max 350 barQ max 100 l/min

MOUNTING INTERFACE

PERFORMANCES

(obtained with mineral oil with viscosity of 36 cSt at 50°C)

Max operating pressure: P - A - B ports T port (DC version) T port (AC version)	bar	350 210 160
Maximum flow on P - A - B ports	l/min	100
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to	ISO 4406:1999 class 20/18/15
Recommended viscosity	cSt	25
Mass: double solenoid single solenoid	kg	4,6 3,7

OPERATING PRINCIPLE

- The MDS5 valve is used to switch multiple flow directions, or to select pressure values. Application example here below.
- The flow paths pass right through the entire valve body and due to this particular design, the MDS5 can be assembled with all ISO 4401-05 modular valves.
- The special connection of the valve in parallel to the P T
 A B lines of the circuit allows easy construction of different hydraulic configurations, reducing the pressure drops to a minimum.

AB а₩ХТТТЬ DS5-S1 (cat. 41310) Т P1 T1 A1 B1 P ТАВ RPC1-*/4M/A (cat. 66300) P1 T1 A1 B1 PTAB lв MDS5-SA1 P1 T1 A1 B1 P ТАВ

APPLICATION EXAMPLE

1 - IDENTIFICATION CODE

2 - SPOOLS

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE DROPS $\triangle P-Q$

EN	ER	GIZ	ED	VAL	VE

	FLOW DIRECTIONS					
SPOOL	P→A	$P \rightarrow A \mid P \rightarrow B \mid A \rightarrow T \mid$				
	CURVES ON GRAPHS					
S1	3	2	1	1		

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values indicated in the graphs are relevant to the standard solenoid valve.

The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

6 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

SPOOL	CURVE
S1, TA	1

	TIMES (±10%) [ms]				
SUPPLY	ENERGIZING	DE-ENERGIZING			
DC	40 ÷ 90	20 ÷ 50			
AC	15 ÷ 30	20 ÷ 50			

7 - INSTALLATION

The valve can be mounted in any position.

Valve fixing takes place by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity and/or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

8 - OVERALL AND MOUNTING DIMENSIONS

E*P4 PILOT OPERATED DISTRIBUTOR SOLENOID OR HYDRAULIC (C*P4) CONTROLLED

E4P4 CETOP P05 E4R4 ISO 4401-05 E5 ISO 4401-08

p max (see table of performances)Q max (see table of performances)

OPERATING PRINCIPLE

- The E*P4 piloted valves are constituted of a 4-way hydraulic operated distributor with a mounting surface in accordance with the ISO 4401 standards, operated by a ISO 4401-03 solenoid directional valve.
- They are made in CETOP P05 and ISO 4401-05 sizes with flow rates up to 150 l/min, and in ISO 4401-08 size with flow rates up to 600 l/min.
- They are available with different spool types (see par. 2) and with some options for the opening control.
- They are available with both the solenoid and the hydraulic control from the X and Y ways.
- A version for high pressures (H) is available.
- It is available also with zinc-nickel surface treatments, that ensures a salt spray resistance up to 600 hours.

PERFORMANCES

(obtained with mineral oil of viscosity of 36 cSt at 50°C)

		E4*4	E4HP4	E5P4	E5HP4
Maximum operating pressure - ports P - A - B - port T (external drainage) - port T (internal drainage) (DC / AC)	bar	320 210 210 / 160	420 350 210 / 160	320 210 210 / 160	420 350 210 / 160
Maximum flow rate from port P to A - B - T	l/min	150 600		00	
Ambient temperature range	°C	-20 / +50			
Fluid temperature range	°C	-20 / +80			
Fluid viscosity range	cSt	10 ÷ 400			
Fluid contamination degree	á	according to IS	SO 4406:1999	class 20/18/1	5
Recommended viscosity	cSt	25			
Mass: E*P4-S, RK E*P4-TA/TC	kg	6,	4	15 15	9,6 9,0

1 - IDENTIFICATION CODE FOR SOLENOID CONTROLLED DISTRIBUTOR

(test operated according to UNI EN ISO 9227 standards and test evaluation operated according to UNI EN ISO 10289 standards). For a salt spray resistance up to **600** hours refer to paragraph 1.1.

1.1 - High corrosion resistance version

This version, available for the basic valve (without option of par. 10) features the zinc-nickel coating on all exposed metal parts of the valve, making it resistant to exposure to the salt spray for **600 hours** (test performed according to UNI EN ISO 9227 and assessment test performed according to UNI EN ISO 10289).

The coil are DC only and specific for this version, featuring a zinc-nickel surface treatment. The coil for DEUTSCH connector has a diode inside. Electrical features at paragraph 9.2. The boot manual override (CM) is installed as standard in order to protect the solenoid tube.

Follow the identification code below to order it

2 - SPOOLS TYPES

Symbols are referred to the solenoid valve E*. For the hydraulic operated version C* please verify the connection scheme (see par. 4).

Type ***TA:** 2 positions (central + external) with spring centering

Type **23 (TA/TC)**: 3-way, 2 external positions with return spring

Type ***TC:** 2 positions (central + external) with spring centering

Type **TC:** 2 external positions with return spring

Type RK:

2 positions with mechanical detent on pilot valve

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification, feasibility and operating limits.

3 - IDENTIFICATION CODE FOR HYDRAULIC CONTROLLED DISTRIBUTOR C*P4

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N for solenoid controlled distributors, omit for hydraulic controlled). For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

5 - PRESSURE DROPS Δp -Q (values obtained with viscosity 36 cSt at 50 °C)

5.1 - Pressure drops E4P4

		E 4				
			CO	NNECTIO	ONS	
SPOOL TYPE	SPOOL	$P\toA$	$P\toB$	$A\toT$	$B\toT$	$P \rightarrow T$
	POSITION		CURVE	S ON G	RAPH	-
S1	Energized	1	1	2	3	
S2	De-energized Energized	5	5	2	4	6*
S3	De-energized Energized	1	1	1• 2	1° 4	
S4	De-energized Energized	6	6	3	5	6
S5	De-energized Energized	1	1 5	2	3	
S6	De-energized Energized	1	1	2	1 4	
S7	De-energized Energized	6	6	3	5	6°
S8	De-energized Energized	6	6	3	5	6•
S9	Energized	1	1	2	2	
S10	De-energized Energized	1' 5	1° 5	2	3	
S11	De-energized Energized	1	1	1 2	3	
S18	De-energized Energized	5 5	1	2	3	
ТА	De-energized Energized	1	1	4	3	
RK	Energized	1	1	4	3	

* A-B blocked • B blocked ° A blocked

		E5					
		CONNECTIONS					
SPOOL TYPE	SPOOL	$P\toA$	$P \rightarrow B$	$A\toT$	$B\toT$	$P\toT$	
	POSITION		CURVE	S ON G	RAPH		
S1	Energized	1	1	2	3		
S2	De-energized Energized	2	2	1	2	6*	
S3	De-energized Energized	1	1	4• 1	4° 2		
S4	De-energized Energized	6	6	3	4	5	
S5	De-energized Energized	1	4 2	2	3		
S6	De-energized Energized	1	1	2	4 2		
S7	De-energized Energized	6	6	3	4	5°	
S8	De-energized Energized	6	6	4	3	5•	
S9	Energized	1	1	2	3		
S10	De-energized Energized	4• 2	4° 2	2	3		
S11	De-energized Energized	1	1	3 1	3		
S18	De-energized Energized	4 2	1	2	3		
TA	De-energized Energized	1	1	2	3		
RK	Energized	1	1	2	3		

* A-B blocked • B blocked • A blocked

5.2 - Pressure drops E5P4

E*P4

6 - SWITCHING TIMES

6.1 - E4P4

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

E4					
TIMES (± 10%) [ms]	ENER	GIZED	DE-ENERGIZED		
	2 Pos.	3 Pos.	2 Pos.	3 Pos.	
CA solenoid	35	25	35	25	
DC solenoid	60	50	50	40	

6.2 - E5P4

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50° C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

E5					
TIMES (± 10%) [ms]	ENERGIZED		DE-ENERGIZED		
	2 Pos.	3 Pos.	2 Pos.	3 Pos.	
CA solenoid	70	40	70	40	
DC solenoid	100	70	80	50	

7 - PERFORMANCE CHARACTERISTICS

E4 - PRESSURES [bar]	E4*4	E4HP4	C4*4	C4HP4
Max pressure in P, A, B ports	320	420	320	420
Max pressure in T line with external drainage	210	350	210	350
Max pressure in T line with internal drainage	210 (DC) 160 (AC)	210 (DC) 160 (AC)	-	-
Max pressure in Y line with external drainage	210 (DC) 160 (AC)	210 (DC) 160 (AC)	-	-
Min piloting pressure NOTE 1	5 ÷ 12			
Max piloting pressure	210	350	210	350

E5 - PRESSURES [bar]	E4*4	E4HP4	C4*4	C4HP4
Max pressure in P, A, B ports	320	420	320	420
Max pressure in T line with external drainage	210	350	210	350
Max pressure in T line with internal drainage	210 (DC) 160 (AC)	210 (DC) 160 (AC)	-	-
Max pressure in Y line with external drainage	210 (DC) 160 (AC)	210 (DC) 160 (AC)	-	-
Min piloting pressure NOTE 1	5 ÷ 12			
Max piloting pressure	210	350	210	350

NOTE 1 minimum piloting pressure can be the lower range value at low flows rates, but with higher flow rates the higher value is needed.

MAXIMUM FLOW RATES [I/min]	E4		E5	
	PRESSURES			
Spool type	at 210 bar	at 320 bar	at 210 bar	at 280 bar
S4, S7, S8	120	100	500	450
All other spools	150	120	600	500
8 - PILOTING AND DRAINAGE

The E*P4 valves are available with piloting and drainage, both internal and external. The version with external drainage allows for a higher back pressure on the outlet.

X: plug M5x6 for external pilot Y: plug M5x6 for external drain

X: plug M6x8 for external pilot Y: plug M6x8 for external drain

	TYPE OF VALVE		sembly
			Y
E*P4-**	INTERNAL PILOT AND EXTERNAL DRAIN	NO	YES
E*P4-**/I	INTERNAL PILOT AND INTERNAL DRAIN	NO	NO
E*P4-**/ E	EXTERNAL PILOT AND EXTERNAL DRAIN	YES	YES
E*P4-**/ EI	EXTERNAL PILOT AND INTERNAL DRAIN	YES	NO

8.1 - Backpressure valve incorporated on line P available for E5 valve only)

Valve E5 is available upon request with backpressure valve incorporated on line P. This is necessary to obtain the piloting pressure when the control valve, in the rest position, has the line P connected to the T outlet (spools S2 - S4 - S7 - S8 - TA002 - TC002 - RK002). The cracking pressure is of 5 bar.

Add C3 to the identification code for this request (see paragraph 1). In the C3 version the piloting is always internal.

E5P4 (with C3 option)

NOTE: the backpressure valve can't be used as direct check valve because it doesn't assure the seal.

The curve refers to the pressure drop (body part only) with backpressure valve energized to which the pressure drop of the reference spool must be added. (see paragraph 5)

9 - ELECTRICAL FEATURES

9.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see catalogue. 49 000).

Protection from atmospheric agents IEC 60529

Connection	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K7 DEUTSCH DT04 male	х	х	x (*)

(*) The protection degree is guaranteed only with the connector correctly connected and installed

9.2 - DC coils

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm's law: V = R x I.

The WK1 and WK7D are coils specific for the high corrosion resistance version of the valve.

The WK7D coil includes a suppressor diode of pulses for protection from voltage peaks during switching. During the switching the diode significantly reduces the energy released by the winding, by limiting the voltage to 31.4V in the D12 coil and to 58.9 V in the D24 coil.

Using connectors type "D" (see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils (starting from 48V voltage) with alternating current (50 or 60 Hz), considering a reduction of the operating limits by approximately 5 + 10%.

The table shows current and power consumption values relevant to DC coils.

(values ±10%)

	Resistance at 20°C [Ω]	Current consumption [A]	Power consumption [W]	Coil code K1 WK1 K7 WK7D			
D12	4,4	2,72	32,7	1903080	1903050	1902940	1903400
D24	18,6	1,29	31	1903081	1903051	1902941	1903401
D48	78,6	0,61	29,5	1903083			
D110	436	0,26	28,2	1903464			
D220	1758	0,13	28,2	1903465			

9.3 - AC coils

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Coils for alternating current (values ± 5%)

Suffix	Nominal Voltage [V]	Freq. [Hz]	Resistance at 20°C [Ohm] (±1%)	Current consumption at inrush [A] (±5%)	Current consumption at holding [A] (±5%)	Power consumption at inrush (±5%) [VA]	Power consumption at holding (±5%) [VA]	Coil Code
A24	24	50	1,46	8	2	192	48	1902830
A48	48		5,84	4,4	1,1	204	51	1902831
A110	110V-50Hz		32	1,84	0,46	192	48	1002832
AIIU	120V-60Hz	50/60	52	1,56	0,39	188	47	1902032
A 2 2 0	230V-50Hz	50/00	140	0,76	0,19	176	44	1002833
A230	240V-60Hz		140	0,6	0,15	144	36	1902033
F110	110	60	26	1,6	0,4	176	44	1902834
F220	220		106	0,8	0,2	180	45	1902835

VOLTAGE SUPPLY FLUCTUATION	±10% Vnom
MAX SWITCH ON FREQUENCY E4 E5	10.000 ins/hr 8.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	According to 2004/108/EC
LOW VOLTAGE	According to 2006/95/EC
CLASS OF PROTECTION: Atmospheric agents (IEC 60529) Coil insulation (VDE 0580) Impregnation: DC valve AC valve	IP 65 (NOTE 2) class H class F class H

10 - OPTIONS

10.1 - Control of the main spool stroke: C

It is possible to introduce special stroke controls in the heads of the hydraulic pilot operated valve so as to vary the maximum spool clearance opening.

This solution allows control of the flow rate from the pump to the actuator and from the actuator to the outlet, obtaining a double adjustable control on the actuator.

Add the letter C to the identification code to request this device (see paragraph 1).

10.2 - Control of the main spool shifting speed: D

By placing a MERS type double flow control valve between the pilot solenoid valve and the hydraulic operated valve, the piloted flow rate can be controlled and therefore the changeover smoothness can be varied.

Add the letter **D** to the identification code to request this device (see paragraph 1).

It is possible to introduce a subplate with a restrictor of \emptyset 0,8 on line P between the pilot solenoid valve and the main distributor.

Add PF to the identification code to request this option (see paragraph 1).

10.4 - Control of the main spool stroke and shifting speed: G

It is possible to have the valve fitted with both the spool stroke device and the piloting flow rate control device.

Add the letter G to the identification code to request this solution (see paragraph 1).

dimensions in mm

	E4	E5
А	280	401,5
В	218	254

11 - INSTALLATION

Configurations with centering and recall springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

NOTE: Use of class 10.9 fastening screws is recommended for valves in version H (high pressure).

12 - E4 OVERALL AND MOUNTING DIMENSIONS

5

Mounting surface with sealing rings

N. 2 OR type 2037 (9.25x1.78) - 90 Shore

13 - E5 OVERALL AND MOUNTING DIMENSIONS

14 - ELECTRIC CONNECTIONS

The valves are delivered without connectors. Connectors for K1/ WK1 connections (DIN 43650) can be ordered separately. See catalogue 49 000.

16 - MANUAL OVERRIDE

Whenever the solenoid valve installation may involve exposure to atmospheric agents or use in tropical climates, the manual override, boot protection is recommended. For overall dimensions see catalogue 41 150.

Add the suffix **CM** to request this device (see paragraph 1).

17 - SUBPLATES

(see catalogue 51 000)

These plates are not suitable for high pressure valves E4HP4 and E5HP4..

	E4	E5
Type with rear ports	PME4-AI5G	
Type with side ports	PME4-AL5G	PME5-AL8G
P, T, A, B, port dimensions	3/4"	1½" BSP
X, Y port dimensions	1/4" BSP	1/4" BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

DSP7 PILOT OPERATED DISTRIBUTOR SOLENOID OR HYDRAULIC (DSC7) CONTROLLED

SUBPLATE MOUNTING ISO 4401-07 (CETOP 07)

p max 350 barQ max 300 l/min

MOUNTING SURFACE

PERFORMANCES

(obtained with mineral oil of viscosity of 36 cSt at 50°C)

- The DSP7 piloted valve is made up of a 4-way hydropiloted distributor with mounting surface according to ISO 4401-07 (CETOP 07) standards, operated by an ISO 4401-03 (CETOP 03) solenoid directional valve.
- It is available with different spool types (see par. 2), with some options for the opening control.
- It is available with both the solenoid and the hydraulic control from the X and Y ways.
- A version for high pressures (H) is available.
- It is available also with zinc-nickel surface treatments, that ensures a salt spray resistance up to 600 hours.

		DSP7	DSP7H	
Maximum operating pressure				
- ports P - A - B		350	420	
- port T (external drainage)	bar	250	350	
- port T (internal drainage)		210 (DC) / 160 (AC)	210 (DC) / 160 (AC)	
Maximum flow rate from port P to A - B - T	l/min	300		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree		according to ISO 4406:1999	class 20/18/15	
Recommended viscosity	cSt	25		
Mass: DSP7-S, RK		8,	6	
DSP7-T*, SA*, SB*	kg	8,	0	
DSC7		6,	6	

1 - IDENTIFICATION CODE FOR DSP7 SOLENOID VALVES

D S P 7 - / 20 -	
Directional valve, Solenoid controlled, Pilot operated Size: ISO 4401-07 (CETOP 07) Option: (omit for standard version) H = high pressure version pmax = 420 bar Spool type (see paragraph 2) S* TA SA* TB SB* RK Series: (the overall and mounting dimensions	Option: / W7 = Zinc-nickel surface treatment (see NOTE 2) Omit if not required Manual override: omit for override integrated in the tube (standard) CM = manual override, boot protected (see paragraph 17) Coil electrical connection (see par. 15): K1 = plug for connector type DIN 43650 (standard) K7 = plug DEUTSCH DT04-2P for male connector type DEUTSCH DT06-2S (available on D12 and D24 coils only) Power supply (see paragraph 10) direct current D12 = 12 V D24 = 24 V D48 = 48 V D110 = 110 V D220 = 220 V D00 = valve without coils (see NOTE 1)
Drainage (see paragraph 9): I = Internal E = External Control options (see paragraph 11): C = Main spool stroke control D = Main spool switching speed control P08 = Subplate placed under solenoid valve with restrictor of Ø0.8 on port P S2 = Distributor delivered with pilot solenoid valve with spool S2	A24 = 24 V - 50 Hz A48 = 48 V - 50 Hz A110 = 110 V - 50 Hz / 120 V - 60 Hz A230 = 230 V - 50 Hz / 240 V - 60 Hz A00 = valve without coils (see NOTE 1) F110 = 110 V - 60 Hz F220 = 220 V - 60 Hz
NOTE 1 : Coils locking ring and related OR are supplied together with valves. NOTE 2 : The standard valve is supplied with surface treatment of phosphatim	s. ng black.
I he zinc-nickel finishing on the valve body (both main and pilot) makes the va (test operated according to UNI EN ISO 9227 standards and test evaluation of	alve suitable to ensure a salt spray resistance up to 240 hours operated according to UNI EN ISO 10289 standards).

For a salt spray resistance up to ${\bf 600}$ hours refer to paragraph 1.1.

1.1 - High corrosion resistance version

This version, available for the basic valve (without option of par. 13) features the zinc-nickel coating on all exposed metal parts of the valve, making it resistant to exposure to the salt spray for **600 hours** (test performed according to UNI EN ISO 9227 and assessment test performed according to UNI EN ISO 10289).

The coil are DC only and specific for this version, featuring a zinc-nickel surface treatment. The coil for DEUTSCH connector has a diode inside. Electrical features at paragraph 10.2. The boot manual override (CM) is installed as standard in order to protect the solenoid tube.

Follow the identification code below to order it

2 - SPOOL TYPE FOR DSP7

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

5 - PRESSURE DROPS △P-Q

(values obtained with viscosity 36 cSt at 50 $^\circ\text{C})$

PRESSURE DROPS WITH VALVE ENERGIZED

	FLOW DIRECTION				
SPOOL TYPE	P-A	P-B	A-T	B-T	
	CUF	RVES ON G	RAPH		
S1, SA1, SB1	1	1	3	4	
S2, SA2, SB2	1	1	4	4	
S3, SA3, SB3	1	1	4	4	
S4, SA4, SB4	2	2	4	5	
S6	1	1	3	4	
S7	1	1	4	4	
S8	1	1	3	4	
S9	1	1	3	4	
S10	1	1	3	4	
S11	1	1	3	4	
S12	1	1	3	4	
S20	1	1	3	4	
S21	1	1	4	4	
ТА, ТВ	1	1	3	4	
TA02, TB 02	1	1	4	4	
RK	1	1	3	4	

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION						
SPOOL TYPE	P-A	P-B	A-T	B-T	P-T		
		CURVES ON GRAPH					
S2, SA2, SB2					6		
S3, SA3, SB3			7	7			
S4, SA4, SB4					7		
S6				7			
S7					8		
S8					8		
S10			7	7			
S11			7				

6 - SWITCHING TIMES

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50° C, at viscosity of 36 cSt and with PA and BT connections. The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

TIMES (± 10%)	ENER	GIZED	DE-ENERGIZED		
[ms]	2 Pos.	3 Pos.	2 Pos.	3 Pos.	
AC solenoid	45	30	45	30	
DC solenoid	75	60	60	45	

Г

7 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure for the different spool types.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The values have been obtained with mineral oil, viscosity 36 cSt at 50 °C, and filtration ISO 4406:1999 class 18/16/13.

SPOOL	CUI	RVE
SFOOL	P→A	P→B
S1,SA1,SB1	1	1
S2, SA2, SB2	1	1
S3, SA3, SB3	1	1
S4, SA4, SB4	2	2
S6	1	1
S7	2	2
S8	2	2
S9	1	1
S10	1	1
S11	1	1
S12	1	1
S20	1	1
S21	1	1

SPOOL	CUI	RVE
SFOOL	P→A	P→B
TA, TB	1	1
TA02, TB02	1	1
23TA, 23TB	1	1
RK	1	1

8 - PERFORMANCE CHARACTERISTICS

PRESSURES [bar]	DSP7	DSP7H	DSC7	DSC7H
Max pressure in P, A, B ports	350	420	350	420
Max pressure in T line with external drainage	250	350	250	350
Max pressure in T line with internal drainage	210 (DC) 160 (AC)	210 (DC) 160 (AC)	-	-
Max pressure in Y line with external drainage	210 (DC) 160 (AC)	210 (DC) 160 (AC)	-	-
Min piloting pressure NOTE 1		5 ÷	· 12	
Max piloting pressure NOTE 2	210	350	210	420

NOTE 1 minimum piloting pressure can be the lower range value at low flows rates, but with higher flow rates the higher value is needed.

NOTE 2 If the valve operates at higher pressures it is necessary to use the version with external pilot and reduced pressure. Otherwise, the valve can be ordered with internal pilot and pressure reducing valve with 30 bar fixed adjustment (pilot type **Z**, see identification code)

Plug assembly

9 - PILOTING AND DRAINAGE

The DSP7 valves are available with piloting and drainage, both internal and external. The version with external drainage allows for a higher back pressure on the outlet.

Х Y INTERNAL PILOT AND IE NO YES EXTERNAL DRAIN INTERNAL PILOT AND Ш NO NO **INTERNAL DRAIN** EXTERNAL PILOT AND EXTERNAL DRAIN EE YES YES EXTERNAL PILOT AND EI YES NO INTERNAL DRAIN

TYPE OF VALVE

9.1 - Backpressure valve incorporated on line P

Valves DSP7 are available upon request with backpressure valve incorporated on line P. This is necessary to obtain the piloting pressure when the control valve, in rest position, has the line P connected to the T port (spools S2, S4, S7, S8, S*2, S*4, TA02, TB02, RK02). The cracking pressure is of 5 bar with a minimum flow rate of 15 l/min.

Add C to the identification code for this request (see paragraph 1).

In the C version the piloting is always internal.

The backpressure valve can be also delivered separately and it can be easily mounted on line P of the main control valve. Specify the code **0266577** to order the backpressure valve separately.

NOTE: the backpressure valve can't be used as check valve because it doesn't assure the seal.

The curve refers to the pressure drop (body part only) with backpressure valve energized to which the pressure drop of the reference spool must be added. (see paragraph 5)

10 - ELECTRICAL FEATURES

10.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

NOTE: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see data sheet 49 000).

Protection from atmospheric agents IEC EN 60529

Connection	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K7 DEUTSCH DT04 male	x	x	x (*)

(*) The protection degree is guaranteed only with the connector correctly connected and installed

10.2 - DC coils

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm's law: V = R x I.

The WK1 and WK7D are coils specific for the high corrosion resistance version of the valve.

The WK7D coil includes a suppressor diode of pulses for protection from voltage peaks during switching. During the switching the diode significantly reduces the energy released by the winding, by limiting the voltage to 31.4V in the D12 coil and to 58.9 V in the D24 coil.

Using connectors type "D" (see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils (starting from 48V voltage) with alternating current (50 or 60 Hz), considering a reduction of the operating limits by approximately 5 + 10%.

The table shows current and power consumption values for DC coils.

(values ±10%)

	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumption [A]	Power consumption [W]	К1	WK7D		
D12	12	4,4	2,72	32,7	1903080	1903050	1902940	1903400
D24	24	18,6	1,29	31	1903081	1903051	1902941	1903401
D48	48	78,6	0,61	29,5	1903083			
D110	110	436	0,26	28,2	1903464			
D220	220	1758	0,13	28,2	1903465			

10.3 - AC coils

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Coils for alternating current (values ± 5%)

Suffix	Nominal Voltage [V]	Freq. [Hz]	Resistance at 20°C [Ohm] (±1%)	Current consumption at inrush [A] (±5%)	Current consumption at holding [A] (±5%)	Power consumption at inrush (±5%) [VA]	Power consumption at holding (±5%) [VA]	Coil Code	
A24	24	50	1,46	8	2	192	48	1902830	
A48	48		5,84	4,4	1,1	204	51	1902831	
A110	110V-50Hz		32	1,84	0,46	192	48	1002832	
	A110 120V-60Hz		52	1,56	0,39	188	47	1902032	
A 220	30 230V-50Hz		140	0,76	0,19	176	44	1002833	
A230 240V-60Hz			140	0,6	0,15	144	36	1902033	
F110	10 110		26	1,6	0,4	176	44	1902834	
F220	220		106	0,8	0,2	180	45	1902835	

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hour
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation: (DC valve) (AC valve)	class H class F class H

11 - OPTIONS

11.1 - Control of the main spool stroke: C

With the help of special side plugs, it is possible to introduce stroke controls in the heads of the piloted valve so as to vary the maximum spool clearance opening.

This solution allows control of the flow rate from the pump to the actuator and from the actuator to the outlet, obtaining a double adjustable control on the actuator.

Add the letter C to the identification code to request this device (see paragraph 1).

DSP7-S*/C

11.2 - Control of the main spool shifting speed: D

By placing a MERS type double flow control valve between the pilot solenoid valve and the main distributor, the piloted flow rate can be controlled and therefore the changeover smoothness can be varied.

Add the letter **D** to the identification code to request this device (see paragraph 1).

11.3 - Subplate with throttle on line P

It is possible to introduce a subplate with a restrictor of \emptyset 0,8 on line P between the pilot solenoid valve and the main distributor.

Add P08 to the identification code to request this option (see paragraph 1).

It is possible to deliver the solenoid operated distributor with pilot valve in configuration S2 (all the ports at outlet). With this option the piloting is necessarily external.

Add S2 to the identification code to request this option (see paragraph 1).

This configuration is used with external piloting in order to allow the unloading of the piloting line when the solenoid operated valve is in rest position.

DSP7-S*/P08

12 - DSP7 OVERALL AND MOUNTING DIMENSIONS FOR SOLENOID DISTRIBUTOR

13 - DSC7 OVERALL AND MOUNTING DIMENSIONS FOR HYDRAULIC DISTRIBUTOR DSC7

14 - INSTALLATION

Configurations with centring and recall springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

NOTE: Use of fastening screws class 10.9 is recommended for valves in version H (high pressure).

15 - ELECTRIC CONNECTIONS

The valves are delivered without connectors. Connectors for K1/ WK1 connections (DIN 43650) can be ordered separately. See catalogue 49000.

17 - MANUAL OVERRIDE

Whenever the solenoid valve installation may involve exposure to atmospheric agents or use in tropical climates, the manual override, boot protection is recommended. Add the suffix **CM** to request this device (see paragraph 1).

18 - SUBPLATES

(see catalogue 51 000)

These plates are not suitable for high pressure valves DSP7H.

Type with rear ports	PME07-Al6G
Type with side ports	PME07-AL6G
P, T, A, B, port dimensions X, Y; L port dimensions	1" BSP 1/4" BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING INTERFACE

PERFORMANCES

(obtained with mineral oil of viscosity of 36 cSt at 50°C)

DSP10 PILOT OPERATED DISTRIBUTOR SOLENOID OR HYDRAULIC (DSC10) CONTROLLED

SUBPLATE MOUNTING ISO 4401-10 (CETOP 10)

p max 350 barQ max 1100 l/min

OPERATING PRINCIPLE

- The DSP10 piloted valve is a 4-way hydropiloted distributor with a connection surface in accordance with the ISO 4401-10 (CETOP RP121H) standards, operated by a ISO 4401-03 (CETOP 03) solenoid directional valve.
- It is available with different spool types (see par. 2) and with some options for the opening control.
- It is available with both the solenoid and the hydraulic control from the X and Y ways.
- The piloting and the drainage can be made inside or outside the valve by inserting or removing the proper threaded plugs located in the main directional control valve (see paragraph 9).

Maximum operating pressure - ports P - A - B (standard version) - port T (external drainage)	bar	350 210
Maximum flow rate from port P to A - B - T	l/min	1100
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	according to ISO 4	406:1999 class 20/18/15
Recommended viscosity	cSt	25
Mass: DSP10 DSC10	kg	50 48

1 - IDENTIFICATION CODE FOR SOLENOID DISTRIBUTOR DSP10

	D	S	Ρ	10) -		1	20)		-				/		/		ŀ	(1	1				
Solenoid directiona	operate al valve	ed																		N oi	lanua mit fo u the t	l ove r ove ube (rride: rride ir	ntegrate	əd
ISO 4401	-10 (CE	ETOP 1	0) siz	e_																C b p	M = r oot pr aragra	nanu oteci aph 1	al over ed (se	ride, e	
Spool typ	e (see j	paragra	aph 2))																					
S* SA* SB*	TA TB RK*		- - ,																	Coil plug type	electr for co DIN 4	ical o onne 1365	connec ctor 0	tion:	
Series: (tl remain ur	he over hchange	all and ed from	mour 20 to	nting (5 29)	limens	ions -																			
Seals: N = NBR V = FPM	seals fo seals fo	or mine or spec	ral oil ial flui	(sta i ids	ndard)													Powe lirec 012 = 024 = 048 = 048 = 0110 0220	er sup t curr = 12 = 24 = 48 0 = 11 0 = 22	oply (ent V V 0 V 0 V	(see p	arag	raph 1	0)	
Piloting (s	see para	agraph	9):			<u> </u>											C	000	= val	ve w	rithout	coils	s (see		1)
I = intern S*2 - E = exterr Z = intern	al (not a S*4) nal al piloti	availab ng with	le for 1 30 b	spoo ar fixe	s S2→ es adju	- S4 - Istmei	1A02	- TB0 ssure	redu	RK02	valve	e					a A A	lterr 24 : 48 :	nate o = 24 [°] = 48 [°]	curre V - 5 V - 5	nt 0 Hz 0 Hz				,
Drainage	(see pa	aragrap	oh 9):														A	110) = 11	0 V -	- 50 ⊢	lz / 1	20 V -	60 Hz	
I = Intern E = Extern	nal nal																A A F	230 00 : 110) = 23 = valv = 11	0 V /e wi 0 V -	- 50 ⊢ thout · 60 H	lz / 2 coils z	40 V - (see I	60 Hz IOTE 1)
Controls (C = Ma D = Ma P15 = S	(see pa in spoo in spoo Subplate Ø1.5 on	ragrapl I stroke I switch e place port P	n 13): e cont ning s d und	rol peed ler so	contro lenoid	l valve	with r	estric	tor o	of							F	220	= 22	U V -	· 00 H	Z			
NOTE: Th	ne locki	ng ring	s of th	ne co	ls and	the re	elevan	t O-R	ings	are	suppl	lied t	ogei	her v	with	valve	es								

2 - SPOOL TYPE

If other spool types are necessary please consult our Technical Department

3 - IDENTIFICATION CODE FOR HYDRAULIC DISTRIBUTOR DSC10

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code V). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

5 - PRESSURE DROPS $\triangle P-Q$

(values obtained with viscosity 36 cSt at 50 $^\circ\text{C}$)

	FLOW DIRECTION							
SPOOL TYPE	SPOOL TYPE P-A P-B A-T							
	CUF	RVES ON G	RAPH					
S1, SA1, SB1	1	1	1	1				
S2, SA2, SB2	2	2	2	2				
S3, SA3, SB3	1	1	4	4				
S4, SA4, SB4	2	2	2	2				
TA, TB	1	1	1	1				
TA02, TB 02	1	1	1	1				
RK	1	1	1	1				

PRESSURE DROPS WITH VALVE ENERGIZED

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION								
SPOOL TYPE	P-A	P-A P-B A-T B-T							
		CURV	ES ON G	RAPH					
S2, SA2, SB2					3				
S3, SA3, SB3			4	4					
S4, SA4, SB4									

6 - SWITCHING TIMES

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

TIMES (± 10%)	ENER	GIZED	DE-ENERGIZED		
[ms]	2 Pos. 3 Pos.		2 Pos.	3 Pos.	
AC solenoid	90	60	90	60	
DC solenoid	130	100	90	60	

7 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406.1999 class 18/16/13.

SPOOL TYPE	CURVE				
	P-A	P-B			
S1,SA1,SB1	1	1			
S2, SA2, SB2	2	2			
S3, SA3, SB3	1	1			
S4, SA4, SB4	2	2			
TA, TB	1	1			
TA02, TB02	1	1			
TA23, TB23	1	1			
RK	1	1			

8 - PERFORMANCE CHARACTERISTICS

PRESSURES [bar]	DSP10
Max pressure in P, A, B ports	350
Max pressure in T line with external drainage	250
Max pressure in T line with internal drainage	210 (DC) / 160 (AC)
Max pressure in Y line with external drainage	210 (DC) / 160 (AC)
Min piloting pressure NOTE 1	6 ÷ 12
Max piloting pressure NOTE 2	280

NOTE 1 minimum piloting pressure can be the lower range value at low flows rates, but with higher flow rates the higher value is needed.

NOTE 2 If the valve operates at higher pressures it is necessary to use the version with external piloting and reduced pressure.

Otherwise, the valve with internal pilot and pressure reducing valve with 30 bar fixed adjustment can be ordered (Piloting type Z, see dimensions at par. 11)

9 - PILOTING AND DRAINAGE

These valves are available with piloting and drainage, both internal and external. The version with external drainage allows for a higher back pressure on the outlet.

\bigotimes	Ŷ
	<u>+</u> -)}+
u + r	┝╌╧┿╧┷┙

X: plug M6x8 for external pilot Y: plug M6x8 for external drain

	TYPE OF VALVE	Plug assembly			
	TYPE OF VALVE		Y		
IE	INTERNAL PILOT AND EXTERNAL DRAIN	NO	YES		
II	INTERNAL PILOT AND INTERNAL DRAIN	NO	NO		
EE	EXTERNAL PILOT AND EXTERNAL DRAIN	YES	YES		
EI	EXTERNAL PILOT AND INTERNAL DRAIN	YES	NO		

10 - ELECTRICAL FEATURES

10.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see CAT. 49 000).

NOTE 2: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	6.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION: Atmospheric agents (CEI EN 60529) Coil insulation (VDE 0580) Impregnation: DC valve AC valve	IP 65 (NOTE 2) class H class F class H

10.2 - Current and absorbed power for DC solenoid valve

The table shows current and power consumption values of the DC coils.

Using connectors type "D" (see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils (starting from 48V voltage) with alternating current (50 or 60 Hz), considering a reduction of the operating limits by $5 \div 10\%$ approx.

(values ± 10%)

	Resistance at 20°C [Ω]	Current consumption [A]	Power consumption [W]	Coil code K1
D12	4,4	2,72	32,7	1903080
D24	18,6	1,29	31	1903081
D48	78,6	0,61	29,5	1903083
D110	436	0,26	28,2	1903464
D220	1758	0,13	28,2	1903465

10.3 - Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

(values ± 5%)								
Suffix	Nominal Voltage [V]	Freq. [Hz]	Resistance at 20°C [Ohm]	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil Code
A24	24	50	1,46	8	2	192	48	1902830
A48	48	- 50	5,84	4,4	1,1	204	51	1902831
A110	110V-50Hz		22	1,84	0,46	192	48	1002022
ATTO	120V-60Hz	50/60	52	1,56	0,39	188	47	1902032
A 220	230V-50Hz	30/00	140	0,76	0,19	176	44	1002833
A230	240V-60Hz		140	0,6	0,15	144	36	1902033
F110	110	60	26	1,6	0,4	176	44	1902834
F220	220	00	106	0,8	0,2	180	45	1902835

11 - OVERALL AND MOUNTING DIMENSIONS FOR DSP10

12 - OVERALL AND MOUNTING DIMENSIONS FOR DSC10

13 - OPTIONS

13.1 - Control of the main spool stroke: C

With the help of special side plugs, it is possible to introduce stroke controls in the heads of the piloted valve so as to vary the maximum spool clearance opening.

This solution allows control of the flow rate from the pump to the actuator and from the actuator to the outlet, obtaining a double adjustable control on the actuator.

Add the letter ${\mbox{\bf C}}$ to the identification code to request this device (see paragraph 1).

13.2 - Control of the main spool shifting speed: D

By placing a MERS type double flow control valve between the pilot solenoid valve and the main distributor, the piloted flow rate can be controlled and therefore the changeover smoothness can be varied.

Add the letter ${\bf D}$ to the identification code to request this device (see paragraph 1).

13.3 - Subplate with throttle on line P

It is possible to introduce a subplate with a restrictor of \emptyset 1,5 on line P between the pilot solenoid valve and the main distributor.

Add **P15** to the identification code to request this option (see paragraph 1).

14 - MANUAL OVERRIDE, BOOT PROTECTED: CM

Whenever the solenoid valve installation may involve exposure to atmospheric agents or use in tropical climates, the manual override, boot protection is recommended. Add /**CM** at the end of the identification code to request this device (see paragraph 1).

15 - ELECTRIC CONNECTORS

The valves are delivered without connector. Connectors for K1 connections (DIN 43650) can be ordered separately. See catalogue 49 000.

16 - INSTALLATION

Configurations with centering and recall springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

Surface quality	
0.01/100	
0.8	

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

OPERATING PRINCIPLE

- These solenoid operated directional valves are equipped with position sensors that monitor the main spool position. The switching position is indicated by a binary signal.
- TÜV certification body certifies the compliance of DS(P)*M valves with the EC safety standards ISO 4413:2012, UNI EN 12622:2014, UNI EN 693:2001 +A2:2001, UNI EN 201:2010 and UNI EN 422:2009 with certificate TÜV IT 14 MAC 0043.
- -The valves are available in direct current versions only (see paragraph 8).

- These valves do not have manual override and can not be disassembled, because of their characteristics and their possible use on machinery subject to safety requirements. Moreover, their components are not interchangeable. Read the Use and Maintenance manual for instructions on operation, safe use and repair of the product

PERFORMANCES

(working with mineral oil of viscosity of 36 cSt at 50°C)

		DS3M	DS5M	DSP5M DSP5RM	DSP7M	DSP8M	DSP10M
Maximum operating pressure: P - A - B ports	har	350	320	320	350	350	350
T port	bui	21	0	see pe	rformance lim	its at paragra	ph 5.5
Maximum flow rate from P to A - B - T	l/min	80	120	150	300	600	1100
Ambient temperature range	°C	-20 / +50					
Fluid temperature range	°C			-20 /	+80		
Fluid viscosity range	cSt			10 ÷	400		
Fluid contamination degree			Accordin	g to ISO 4406	6:1999 class 2	20/18/15	
Recommended viscosity	cSt	25					
Mass: single solenoid valve double solenoid valve	kg	1,8 2,2	5	7,1 8	8,7 9,6	15,6 16,6	50 50.5

DS(P)*M

MACHINE DIRECTIVE CERTIFICATION

All solenoid valves and solenoid operated valves of the DS(P)*M family were tested on a voluntary basis by TÜV and found to comply with the applicable requirements of the following standards:

- UNI EN ISO 4413:2012 Hydraulic fluid power General rules and safety requirements for systems and their components
- UNI EN 12622:2014 Safety of machine tools Hydraulic press brakes
- UNI EN 693:2001+A2:2011 Machine tools Safety Hydraulic presses
- UNI EN 201:2010 Plastics and rubber machines Injection moulding machines Safety requirements
- UNI EN 422:2009 Rubber and Plastic machines Safety requirements

1 - IDENTIFICATION OF SOLENOID VALVES DIRECT OPERATED

1.1 - Identification code

DS3		01 0 0 2 0								0.0010					
		S*	SA*	SB*	TA TA100	TB TB100	DS5		S*	SA*	SB*	TA TA100	TA02 TB02	ТВ ТВ100	
ч	R0	x						R	R0	х					
NSO	MA		х	x	x	x		NSO DE	MA		х	х	x	х	x
14 E	MB		x	x	x	x		SEI	MB		х	х	x	х	x
					•										

D

DS(P)*M

1.2 - Spool types for DS3M and DS5M

DS(P)*M

FLOW DIRECTION

2 - CHARACTERISTIC CURVES OF DIRECT OPERATED SOLENOID VALVES

(obtained with viscosity 36 cSt at 50 $^\circ\text{C})$

		-		-	
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T
		CURV	ES ON C	GRAPH	
S1, SA1; SB1	2	2	3	3	-
S3	3	3	1	1	-
S4, SA4	5	5	5	5	3
TA, TB	2	2	2	2	-
TA100, TB100	4	4	4	4	-

For S3 in central position $B \rightarrow T$ refer to curve 3.

	FLOW DIRECTION				
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T
	CURVES ON GRAPH				
S1, SA1, SB1	2	2	1	1	
S3	2	1	2	3	
S4, SA4, SB4	1	1	2	2	4
TA, TB, TA02, TB02	3	3	2	2	-
TA100, TB100	2	2	2	2	-

For S3 in central position $B \rightarrow T$ refer to curve 5.

2.3 - Performance limits for DS3M and DS5M solenoid valves

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The values have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

The state of the s	It is the second sec		C . A	· · · · · · · · · · · · · · · · · · ·	and the second state of the second state	
I no onoratino	\mathbf{n} and \mathbf{n} and \mathbf{n}	oneidoraniv redilcod i	T 3 /I_W/3V/ V/3IV/A I	C 11COU 3C <-W/3V	VOIVO WITH HOTT A	OF B DILIGGOG OF WITHOUT TIOW
	ע הוווווונס המוו חב הו			s useu as j-wav		
		······································				

1

1

TA, TA100

2.4 - Switching times

The indicated values had obtained according to ISO 6403 standards, using mineral oil with viscosity 36 cSt at 50 °C.

TIMES [ms]	ENERGIZING	DE-ENERGIZING	TIMES [ms]	ENERGIZING	DE-ENERGIZING
DS3M	25 ÷ 75	15 ÷ 25	DS5M	100 ÷ 150	20 ÷ 50

3 - OVERALL AND MOUNTING DIMENSIONS FOR DIRECT OPERATED VALVES

DS(P)*M

4 - IDENTIFICATION OF PILOT OPERATED SOLENOID VALVES

4.1 - Identification code

NOTE: DSP10M available with spools S1 or S4, with monitored position R0 or M0 only.

х

х

х

MAB

х

DS(P)*M

4.2 - Spool types for DSP5M, DSP5RM, DSP7M and DSP8M

5 - CHARACTERISTIC CURVES AND PERFORMANCES

(values obtained with viscosity 36 cSt at 50 $^\circ\text{C})$

	FLOW DIRECTION				
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T
		CURV	ES ON C	GRAPH	
S1, SA1	4	4	1	1	-
S3	4	4	1	1	-
S4	5	5	2	3	5
TA, TB	4	4	1	1	-
TA100, TB100	3	3	1	1	-
RK	4	4	1	1	-

For pressure drops of the S3 spool in central position refer to the curve 4.

5.2 - DSP7M - Pressure drops Δp -Q

		FLOW DIRECTION				
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T	
		CURV	ES ON G	RAPH		
S1, SA1	1	1	4	5	-	
S3	1	1	5	5	-	
S4	2	2	5	6	5	
TA, TB	1	1	4	5	-	
TA100, TB100	3	3	3	5	-	
RK	1	1	4	5	-	

For pressure drops of the S3 spool in central position refer to the curve 5.

	FLOW DIRECTION				
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T
		CURV	ES ON G	RAPH	
S1, SA1	2	2	3	3	-
S3	2	2	2	1	-
S4	4	4	3	5	6
TA, TB	2	2	3	3	-
TA100, TB100	5	5	5	5	-
RK	2	2	3	3	-

For pressure drops of the S3 spool in central position refer to the curve 4.

5.4 - DSP10M - Pressure drops △p-Q

	FLOW DIRECTION					
SPOOL TYPE	P→A	Р→В	A→T	B→T	P→T	
	CURVES ON GRAPH					
S1	1	1	1	1	-	
S4	2	2	2	2	-	

5.5 - Performance limits for pilot operated valves

PRESSURES	DSP5M DSP5RM	DSP7M	DSP8M	DSP10M
Max pressure in P, A, B ports	320	350	350	350
Max pressure in T line	210	210	210	210
Max pressure in Y line	210	210	210	210
Min piloting pressure NOTE 1	5 ÷ 10	5 ÷ 12	7 ÷ 14	6 ÷ 12
Max piloting pressure NOTE 2	210	210	210	280

NOTE 1: minimum piloting pressure can be the lower range value at low flows rates, but with higher flow rates the higher value is needed. NOTE 2: if the valve operates with higher pressures it is necessary to use the version with external pilot and reduced pressure. Otherwise, the valve with internal pilot and pressure reducing valve with 30 bar fixed adjustment can be ordered. Add the letter Z to the identification code to order this option (see par. 4.1).

MAXIMUM FLOW RATES		DSI DSP	P5M SRM	DSI	Р7 М	DSI	P8M	DSP	10M
Spool type		210 bar	320 bar	210 bar	PRESS 350 bar	SURES 210 bar	350 bar	210 bar	350 bar
S4 - TA100	[l/min]	120	100	200	150	500	450	750	600
S1 - S3 - TA - RK	[i/min] -	150	120	300	300	600	500	900	700

5.6 - Switching times

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

TIMES (± 10%)	ENER	GIZING	DE-ENERGIZING		
[ms]	2 Pos.	3 Pos.	2 Pos.	3 Pos.	
DSP5M - DSP5RM	60	50	50	40	
DSP7M	75	60	60	45	
DSP8M	100	70	80	50	
DSP10M	-	100	-	140	

6 - PILOTING AND DRAINAGE

These valves are available with piloting and drainage, both internal and external. The version with external drainage allows for a higher back pressure on the outlet.

		Plug assembly		
	TTPE OF VALVE		Y	
IE	internal pilot and external drain	NO	YES	
н	Internal pilot and internal drain	NO	NO	
EE	external pilot and external drain	YES	YES	
EI	external pilot and internal drain	YES	NO	

Y: plug M5x6 for external drain

Y: plug M6x8 for external drain

6.1 - Backpressure valve incorporated on line P (C option)

DSP7M and DSP8M valves are available upon request with backpressure valve incorporated on line P. This is necessary to obtain the piloting pressure when the control valve, in rest position, has the line P connected to the T port (spools S4).

The cracking pressure is of 5 bar with a minimum flow rate of 15 l/min.

In the C version the piloting is always internal.

NOTE: the backpressure valve can't be used as check valve because it doesn't assure the seal.

Add C to the identification code for this request (see paragraph 4.1).

For DSP7M only, the backpressure valve can be also delivered separately and it can be easily mounted on line P of the main control valve. Ask for code 0266577 to order the backpressure valve.

pilot always internal Y: plug M6x8 for external drain

The curve refers to the pressure drop (body part only) with backpressure valve inside, to which the pressure drop of the reference spool must be added. (see par. 5)

в Δ

X

7 - OPTIONS

7.1 - Option D : control of the main spool shifting speed

By placing a MERS type double flow control valve between the pilot solenoid valve and the hydropiloted valve, the piloted flow rate can be controlled and therefore the change over smoothness can be varied.

Add the letter **D** to the identification code to request this device (see paragraph 4.1).

dimensions in mm

	DSP5	DSP7	DSP8	DSP10
А	218	225	254	307

8 - ELECTRICAL FEATURES

8.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated and locked to suit the available space.

NOTE 1 : In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see catalogue 49 000).

NOTE 2: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

8.2 - Current and absorbed power

The tables shows current and power consumption values relevant to the different coil types for DC.

DS3M, DSP5M, DSP5RM, DSP7M, DSP8M and DSP10M (values ± 10%)

Suffix	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt [W]	Coil code
D12	12	4,4	2,72	32,7	1903080
D24	24	18,6	1,29	31	1903081
D110	110	436	0,26	28,2	1903464
D220	220	1758	0,13	28,2	1903465

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY DS3M DS5M DSP5M - DSP5RM DSP7M DSP8M DSP10M	15.000 ins/hr 13.000 ins/hr 5.000 ins/hr 5.000 ins/hr 4.000 ins/hr 3.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION: Atmospheric agents (EN 60529) Coil insulation (VDE 0580)	IP 65 (NOTE 2) class H

DS5M	(values	± 5%)
------	---------	-------

Suffix	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt [W]	Coil code
D12	12	3,2	3,75	45	1903200
D24	24	12	2	48	1903201
D110	110	250	0,44	48	1903204
D220	220	1050	0,21	47	1903205

9 - COIL CONNECTORS

The solenoid operated valves are delivered without the connectors. They can be ordered separately.

For the identification of the connector type to be ordered, please see catalogue 49 000.

11 - DSP7M OVERALL AND MOUNTING DIMENSIONS

D

12 - DSP8M OVERALL AND MOUNTING DIMENSIONS

dimensions in mm DSP8M-RK - 75 225 4 15 L ø A B 224 193 33.2 183 P A 126 sensor type: M0 MAB 42 42 1 5.5 11 ø6 5.5 30 152 187.5 106 45 338.5 Ъ 11.5 /=T 115

13 - DSP10M OVERALL AND MOUNTING DIMENSIONS

14 - MOUNTING SURFACES

15 - POSITIONING SENSORS

WARNING ! The disassembly of the valve is not allowed. The sensors must not be unscrewed or tampered with in any way.

The M0 and MAB versions have two positioning sensors; consider that the connection scheme shown must be done for each sensor.

R0 CONNECTION SCHEME

Pin	Values	Function
1	+24 V	Supply
2	NC	Normal Closed -
3	0 V	-
4	NC	Normal Closed +

ELECTRICAL CHARACTERISTICS				
Operating voltage range	V DC	20 ÷ 32		
Absorbed current	A	0.4		
Max output load	mA	400		
Output		2 PNP		
Electric protections	polarity inversion short circuit			
Hysteresis	mm	≤ 0.1		
Operating temperature range	°C	-25 / +80		
Class of protection according to CEI EN 60529 standards IP65 (atmospheric agents)				
EMC Electromagnetic compatibility	DIN EN 61000-6-1/2/3/4			

M* CONNECTION SCHEME

Pin	Values	Function
1	+24 V	Supply
2	NC	Normal Closed
3	0 V	-
4	NO	Normal Open

16 - SWITCHING LOGICS

Duplomatic offers a wide range of available positions to be monitored, and for the pilot operated valve there are even monitorning with redundant signal.

16.1 - R0 monitoring

Central position monitored with one positioning sensor.

Available on both direct and pilot operated valves; spool type S^*

16.2 - MA monitoring

Energized position monitored with one positioning sensor.

Available on both direct and pilot operated valves; spool type SA*, TA, TA02, TA100

Position 'a' monitored with one positioning sensor.

Available on pilot operated valves only; spool type RK

De-energized position monitored with one positioning sensor. Available on both direct and pilot operated valves; spool type SB*, TB, TB02, TB100

16.3 - MB monitoring

De-energized position monitored with one positioning sensor.

Available on both direct and pilot operated valves; spool type SA*, TA, TA02, TA100

Energized position monitored with one positioning sensor. Available on both direct and pilot operated valves; spool type SB*, TB, TB02, TB100

Position 'b' monitored with one positioning sensor. Available on pilot operated valves only; spool type RK

16.4 - M0 monitoring

Central position monitored by two separate positioning sensors. Available on pilot operated valves only;

spool type S*

16.5 - MAB monitoring

Both external positions monitored by two separate positioning sensors.

Available on pilot operated valves only; spool type S^*

De-energized position monitored on side A. Energized position monitored on side B. Available on pilot operated valves only; spool type SA1, TA, TA100

Energized position monitored on side A. De-energized position monitored on side B. Available on pilot operated valves only; spool type SB1, TB, TB100

17 - SENSOR CONNECTORS

The female connectors for position switches can be ordered separately, by specifying the descriptions here below, depending on the desired type.

STRAIGHT CONNECTOR, MOLDED CABLE, PRE-WIRED

description: ECM4S/M12L/10

Protection class: IP68 Cable: 4 conductors 0.34 mm² length 5 mt - Ø 4.7 mm Cable material: polyurethane resin (oil resistant) Without LED.

ANGLED CONNECTOR, MOLDED CABLE, PRE-WIRED

description: ECM4S/M12S/10

Protection class: IP68 Cable: 4 conductors 0.34 mm² length 5 mt - Ø 4.7 mm Cable material: polyurethane resin (oil resistant) Without LED.

ANGLED CONNECTOR, UNASSEMBLED

Circular connector with screw locking; strain relief by means of clamping cage.

description: EC4S/M12S/10

Protection class: IP67 IEC 61076-2-101 (Ed. 1) IEC 60947-5-2 Conductor size: max 0.75 mm² Cable gland: PG7 suitable cables: 4 ÷ 6 mm² Case material: polyamide (nylon) Without LED.

18 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

19 - INSTALLATION

WARNING ! These valves must be installed and commissioned by qualified personnel only. Before starting any installation, commissioning or maintenance is mandatory read the *manual of use and maintenance*, delivered together with the valve.

Configurations with centering and recall springs can be mounted in any position; The RK versions, without springs and with mechanical detent, must be mounted with the longitudinal axis horizontal.

Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

20 - SUBPLATES

(see catalogue 51 000)

	DS3M	DS5M	DSP5M	DSP7M	DSP8M
Type with rear ports	PMMD-AI3G	PMD4-AI4G	PME4-AI5G	PME07-AI6G	-
Type with side ports	PMMD-AL3G	PMD4-AL4G	PME4-AL5G	PME07-AL6G	PME5-AL8G
P, T, A, B ports dimensions	3/8" BSP	3/4" BSP (PMD4-AI4G) 1/2" BSP (PMD4-AL4G)	3/4" BSP	1" BSP	1 ½" BSP
X, Y ports dimensions	-	-	1/4" BSP	1/4" BSP	1/4" BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 505/216 ED

41 515/216 ED

OPERATING PRINCIPLE

D*K* EXPLOSION-PROOF SOLENOID OPERATED DIRECTIONAL CONTROL VALVES ATEX, IECEx, INMETRO

DS3K*	ISO 4401-03
DL5BK*	ISO 4401-05
DSP5K*	CETOP P05
DSP5RK*	ISO 4401-05
DSP7K*	ISO 4401-07
DSP8K*	ISO 4401-08
DSP10K*	ISO 4401-10

- The direct operated directional valves are available in ISO 4401-03 and ISO 4401-05 size; available pilot operated sizes are: CETOP P05, ISO 4401-05, ISO 4401-07, ISO 4401-08 and ISO 4401-10.
- They are compliant with ATEX, IECEx and INMETRO requirements and are suitable for use in potentially explosive atmospheres, for surface plants or mines.
- A low temperature version (up to -40 °C) is also available.
- DS3K* and DL5BK* valves are supplied with a zinc-nickel finishing surface treatment that ensures a salt spray resistance up to 600 h; for DSP*K* valves, this treatment is available upon request.
- Details for classification, operating temperatures and electrical characteristics are in the technical data sheet 02 500 'Explosion proof classification'.

PERFORMANCES

(obtained with mineral oil with viscosity of 36 cSt at 50°C)

		DS3K*	DL5BK*	DSP5K* DSP5RK*	DSP7K*	DSP8K*	DSP10K*
Maximum operating pressure							
P - A - B ports	bar	350	320	320	350	350	350
T port		210	210	see operating limits at paragraph 6			
Maximum flow from P port to A - B - T	l/min	80	125	150	300	600	1100
Operating temperatures °C		see data sheet 02 500					
Fluid viscosity range	cSt	10 ÷ 400					
Fluid contamination degree		According to ISO 4406:1999 class 20/18/15					
Recommended viscosity cSt		25					
Mass single solenoid valve double solenoid valve	kg	1,8 2,8	2,7 3,8	6,8 7,8	8,6 9,6	15,5 16,5	52 53

1 - IDENTIFICATION OF DIRECT OPERATED SOLENOID VALVES

1.1 - Identification code

1.2 - Names of valves per certification

	ATEX		IECEx		INMETRO	
for gases for dusts	KD2	II 2GD	KXD2	IECEx Gb IECEx Db	KBD2	INMETRO Gb INMETRO Db
for mines	KDM2	I M2	KXDM2	IECEx Mb	KBDM2	INMETRO Mb

NOTE: Refer to the technical data sheet 02 500 for marking, operating temperatures and available versions.

1.3 - Available spools

SA1	
SA2	
SA3	
SA4	
SA9	

Version **SB***: 1 solenoid side B 2 positions (central + external) with spring centering

Version **RK**: 2 solenoids - 2 positions with mechanical detent

Version **TB**: 1 solenoid side B 2 external positions with return spring

2 - CHARACTERISTIC CURVES AND PERFORMANCES OF DIRECT OPERATED SOLENOID VALVES

2.1 - Pressure drops Δp -Q

(values obtained with viscosity 36 cSt at 50 $^\circ\text{C}$)

DS3K*

ENERGIZED VALVE

	FLOW DIRECTION					
SPOOL	P→A	P→B	A→T	B→T		
	Cl	CURVES ON GRAPH				
S1, SA1, SB2	2	2	3	3		
S2, SA2, SB2	1	1	3	3		
S3, SA3, SB3	3	3	1	1		
S4, SA4, SB4	4	4	4	4		
S9, SA9, SB9	2	2	3	3		
TA, TB	3	3	3	3		
TA02, TB02	2	2	2	2		
TA23, TB23	3	3	-	-		
RK	2	2	2	2		

DE-ENERGIZED VALVE

	FLOW DIRECTION						
SPOOL	P→A	P→B	A→T	B→T	P→T		
		CURVES ON GRAPH					
S2, SA2, SB2	2						
S3, SA3, SB3	-	-	3	3	-		
S4, SA4, SB4	-	-	-	-	3		

DL5BK*

ENERGIZED VALVE

	FLOW DIRECTIONS					
SPOOL	P→A	P→B	A→T	B→T		
	CUI	RVES O	N GRAF	PHS		
S1	1	1	2	2		
S2	1	1	1	1		
S3	1	1	1	1		
S4	4	4	4	4		
S9	1	1	1	1		
RK	2	2	2	2		
ТА	2	2	3	3		
TA02	2	2	1	1		
TA23	3	3	-	-		

DE-ENERGIZED VALVE

	FLOW DIRECTIONS				
SPOOL	A→T B→T		P→T		
	CURV	APHS			
S2	-				
S3	5	5	-		
S4	-	-	1		

2.2 - Performance limits

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage, with mineral oil with viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

DS3K*

The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

DC SOLENOID VALVE					
SPOOL	CUF	RVE			
SPOOL	P→A	P→B			
S1,SA1,SB1	1	1			
S2, SA2, SB2	2	2			
S3, SA3, SB3	3	3			
S4, SA4, SB4	2	2			
S9, SA9, SB9	1	1			
TA, TB	1	1			
TA02, TB02	4	4			
TA23, TB23	4	4			
RK	1	1			

RAC SOLENOID VALVE

SPOOL	CUF	RVE
GFOOL	P→A	P→B
S1,SA1,SB1	1	1
S2, SA2, SB2	2	2
S3, SA3, SB3	3	3
S4, SA4, SB4	4	4
S9, SA9, SB9	1	1
TA, TB	1	1
TA02 *, TB02 *	\ge	\ge
TA23, TB23	4	4
RK	1	1

* not available

DL5BK*

SPOOL	CURVE
S1, S2, RK	1
TA02	2
S3	3
S4	4
TA, TA23	5
S9	6

2.3 - Switching times

The indicated values are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

	DS	3K*	DL5	iBK*
TIMES [ms]	ENERGIZING	DE-ENERGIZING	ENERGIZING	DE-ENERGIZING
DC	60	40	70 ÷ 100	15 ÷ 20
RAC	60	140	70 ÷ 100	140

41 515/216 ED

3 - OVERALL AND MOUNTING DIMENSIONS OF DIRECT OPERATED VALVES

D*K* SERIES 10

4 - IDENTIFICATION OF PILOT OPERATED SOLENOID VALVES DSP*K*

4.1 - Identification code

A version suitable for an operating pressure value of **420 bar** on ports P - A - B is available upon request, except for DSP5K*-S4 / DSP5RK* and DSP10K* valves. On this version, the maximum pressure value on port T with external drain and the pilot pressure are equal to 350 bar. The maximum pressure on port T with internal drainage is 210 bar.

Add the letter H to request this version (ex. DSP7HK*).

NOTE: the valves are supplied with standard surface treatment of phosphating black for the main body and zinc-nickel for the pilot body. Upon request we can supply these valves with full zinc-nickel surface treatment, suitable to ensure a salt spray resistance up to 600 h (test operated according to UNI EN ISO 9227 standards and test evaluation operated according to UNI EN ISO 10289 standards).

For full zinc-nickel surface treatment add /W7 at the end of the identification code.

4.2 - Spool types

5 - CHARACTERISTIC CURVES AND PERFORMANCES OF PILOT OPERATED SOLENOID VALVES

5.1 - Pressure drops Δp -Q

(values obtained with viscosity 36 cSt at 50 °C)

DSP5K* - DSP5RK*

ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL	P→A	P→B	A→T	B→T		
	CURVES ON GRAPH					
S1, SA1, SB1	4	4	1	1		
S2, SA2, SB2	3 3 1					
S3, SA3, SB3	4 4 1 1					
S4, SA4, SB4	5 5 2 3					
TA, TB	4	4	1	1		
TA02, TB02	3	3	1	1		
RK	4	4	1	1		

DE-ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL	P→A	P→B	A→T	B→T	P→T	
	CURVES ON GRAPH					
S2, SA2, SB2	-	-	-	-	5	
S3, SA3, SB3	-	-	4	4	-	
S4, SA4, SB4	-	-	-	-	5	

DSP7K*

ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL	P→A	P→B	A→T	B→T		
	CURVES ON GRAPH					
S1, SA1, SB1	1	1	3	4		
S2, SA2, SB2	1	1	4	4		
S3, SA3, SB3	1	1	4	4		
S4, SA4, SB4	2 2 4					
TA, TB	1	1	3	4		
TA02, TB02	1	1	4	4		
RK	1	1	3	4		

DE-ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL	P→A	Р→В	A→T	B→T	P→T	
	CURVES ON GRAPH					
S2, SA2, SB2	-	-	-	-	2	
S3, SA3, SB3	-	-	4	4	-	
S4, SA4, SB4	-	-	-	-	4	

DSP8K*

ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL	P→A	Р→В	A→T	B→T		
	CURVES ON GRAPH					
S1, SA1, SB1	2	2	3	3		
S2, SA2, SB2	1	1	2	1		
S3, SA3, SB3	2 2 2					
S4, SA4, SB4	4 4 3 5					
TA, TB	2	2	3	3		
TA02, TB02	2 2 3 3					
RK	2	2	3	3		

	FLOW DIRECTION					
SPOOL	P→A	P→B	A→T	B→T	P→T	
	CURVES ON GRAPH					
S2, SA2, SB2	-	-	-	-	4	
S3, SA3, SB3	-	-	4	4	-	
S4, SA4, SB4	-	-	-	-	6	

DSP10K*

ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL	P→A	Р→В	A→T	B→T		
	CURVES ON GRAPH					
S1, SA1, SB1	1	1	1	1		
S2, SA2, SB2	2	2	2	2		
S3, SA3, SB3	1	1	4	4		
S4, SA4, SB4	2 2 2 2					
TA, TB	1	1	1	1		
TA02, TB02	1 1 1 1					
RK	1	1	1	1		

DE-ENERGIZED POSITION

		FLOW DIRECTION				
SPOOL	P→A	P→B	A→T	B→T	P→T	
	CURVES ON GRAPH					
S2, SA2, SB2	-	-	-	-	3	
S3, SA3, SB3	-	-	4	4	-	
S4, SA4, SB4	-	-	-	-	4	

5.2 - Switching times

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

TIMES (± 10%)	ENERGIZING DE-ENERG		RGIZING
[ms]	DC - RAC	DC	RAC
DSP5K* - DSP5RK*	70	60	160
DSP7K*	80	70	170
DSP8K*	90	70	170
DSP10K*	120	90	190

6 - HYDRAULIC CHARACTERISTICS

PRESSURES (bar)	DSP5K* DSP5RK*	DSP7K*	DSP8K*	DSP10K*
Max pressure in P, A, B ports	320	350	350	350
Max pressure in T line with external drainage	210	250	210	210
Max pressure in T line with internal drainage	210	210	210	210
Max pressure in Y line with external drainage	210	210	210	210
Min piloting pressure NOTE 1		5 ÷ 12		6 ÷ 12
Max piloting pressure NOTE 2	210	210	210	280

NOTE 1: minimum piloting pressure can be the lower range value at low flows rates, but with higher flow rates the higher value is needed.

NOTE 2: if the valve operates with higher pressures it is necessary to use the version with external pilot and reduced pressure. Otherwise, the valve with internal pilot and pressure reducing valve with 30 bar fixed adjustment can be ordered.

Add the letter Z to the identification code to order this option (see par. 4.1). Consider that, by adding the pressure reducing valve, the overall dimensions increase 40 mm in height.

MAXIMUM FLOW RATES		DSP5K* DSP5RK*		DSP7K*		DSP8K*		DSP10K*	
Speel type		PRESSURES							
Spool type		at 210 bar	at 320 bar	at 210 bar	at 350 bar	at 210 bar	at 350 bar	at 210 bar	at 350 bar
S4 - SA4 - SB4	[l/min]	120	100	200	150	500	450	750 (NOTE)	600 (NOTE)
Other spools		150	120	300	300	600	500	900	700

NOTE: for the DSP10K* valve these values are the same even for S2 - SA2 - SB2 spools.

7 - PILOT AND DRAIN

DSP*K* valves are available with piloting and drainage, both internal and external.

The version with external drainage allows for a higher back pressure on the outlet.

		Plug assembly		
		Х	Y	
IE	INTERNAL PILOT AND EXTERNAL DRAIN	NO	YES	
II	INTERNAL PILOT AND INTERNAL DRAIN	NO	NO	
EE	EXTERNAL PILOT AND EXTERNAL DRAIN	YES	YES	
EI	EXTERNAL PILOT AND INTERNAL DRAIN	YES	NO	

DSP8K*

DSP5K*

DSP5RK*

DSP7K*

X: plug M5x6 for external pilot Y: plug M5x6 for external drain

X: plug M6x8 for external pilot Y: plug M6x8 for external drain

7.1 - Backpressure valve incorporated on line P (C option)

DSP7K* and DSP8K* valves are available upon request with backpressure valve incorporated on line P. This is necessary to obtain the piloting pressure when the control valve, in rest position, has the line P connected to the T port (spools S2 - S4 - S*2 - S*4 - T*02). The cracking pressure is of 5 bar with a minimum flow rate of 15 l/min.

In the C version the piloting is always internal.

NOTE: the backpressure valve can't be used as check valve because it doesn't assure the seal.

Add C to the identification code for this request (see paragraph 4.1).

For DSP7K* only, the backpressure valve can be also delivered separately and it can be easily mounted on line P of the main control valve. Ask for code 0266577 to order the backpressure valve.

 (Υ) P

DSP8K*

pilot always internal Y: plug M6x8 for external drain

The curve refers to the pressure drop (body part only) with backpressure valve energized to which the pressure drop of the reference spool must be added (see paragraph 5).

8 - ELECTRICAL CHARACTERISTICS

(values ± 5%)

Coil type	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt. [W]
D12	12	7,2	1,7	20
D24	24	28,7	0,83	20
D48	48	115	0,42	20
D110	110	549	0,2	22

Coil type (NOTE)	Nominal voltage [V]	Freq. [Hz]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt. [VA]
P120	110V-50Hz 120V-60Hz 230V-50Hz 240V-60Hz	50/60	489,6	0,19	21
K120				0,21	25
P240			2067,7	0,098	22,5
1240				0,1	24

VOLTAGE SUPPLY FLUCTUATION (ripple included)	± 10% Vnom
MAX SWITCH ON FREQUENCY DS3K*, DL5BK* DSP5K*, DSP5RK* DSP7K* DSP8K* DSP10K*	8.000 ins/hr 6.000 ins/hr 6.000 ins/hr 4.000 ins/hr 3.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	According to 2014/30/EU
CLASS OF PROTECTION: Atmospheric agents Coil insulation (VDE 0580)	IP66 / IP68 class H

NOTE: type R* coils are for alternating current supply for both 50 or 60 Hz. For R* coils the resistance can not be measured in the usual way because of the presence of diodes bridge inside the coil.

8.1 - Wiring

In order to realise the electrical connection of the coil, it is necessary to access the terminal block (1) unscrewing the 4 screws (2) that fasten the cover (3) with the box (4) that contains the terminal block.

The electrical connection is polarity-independent.

By doing electrical connection it is important to connect also the grounding point (5) in the terminal block box (M4 screws), through suitable conductors with the general grounding line of the system.

On the external body of the coil there is a grounding point (6) (M4 screw) that allow to ensure equipotentiality between the valve and the general grounding line of the system; connecting this point the regulation of the EN 13463-1 standard, that impose to verify the equipotentiality of the elements included in a potentially explosive environment (the maximum resistance between the elements must be 100 Ω), is guaranteed.

At the end of the electrical wiring, it is necessary to reassemble the cover (3) on the box (4), checking the correct positioning of the seal located in the cover seat and fastening the 4 M5 screws with a torque of 4.9÷6 Nm.

Electrical wiring must be done following in compliance with standards about protection against explosion hazards.

Characteristics of the cables connectable for wiring are indicated in the table below:

Function	Cable section
Operating voltage cables connection	max 2.5 mm ²
Connection for internal grounding point	max 2.5 mm ²
Connection for external equipotential grounding point	max 6 mm ²

Cables for wiring must be non-armoured cables, with external covering sheath and must be suitable for use in environments with temperatures from - 20 $^{\circ}$ C to +110 $^{\circ}$ C (for valves either with N or V seals) or from - 40 $^{\circ}$ C to +110 $^{\circ}$ C (for valves with NL seals).

Cable glands (which must be ordered separately, see paragraph 19) allow to use cables with external diameter between 8 and 10 mm.

8.2 - Electrical diagrams

8.3 - Overcurrent fuse and switch-off voltage peak

Upstream of each valve, an appropriate fuse (max 3 x In according to IEC 60127) or a protective motor switch with short-circuit and thermal instantaneous tripping, as short-circuit protection, must be connected. The cut-off power of the fuse must correspond or exceed the short circuit current of the supply source. The fuse or the protective motor must be placed outside the dangerous area or they must be protected with an explosion-proof covering.

In order to safeguard the electronic device to which the valve is connected, there is a protection circuit in the coil, that reduces voltage peaks, which can occur when inductances are switched off.

The table shows the type of fuse recommended according to the nominal voltage of the valve and to the value of the voltage peaks reduction.

Coil type	Nominal voltage [V]	Rated current [A]	Recommended pre-fuse characteristics medium time-lag according to DIN 41571 [A]	Maximum voltage value upon switch off [V]	Suppressor circuit
D12	12	1,7	2,5	- 49	
D24	24	0,83	1,25	- 49	
D48	48	0,42	0,6	- 81	Transient voltage
D110	110	0,2	0,3	- 309	bidirectional
R120	120	0,21	0,3	- 3	
R240	240	0,1	0,15	- 3	

9 - OPTIONS

paragraph 4.1).

9.1 - Control of the main spool stroke: C

With the help of special side plugs, it is possible to introduce stroke controls in the heads of the piloted valve so as to vary the maximum spool clearance opening.

This solution allows control of the flow rate from the pump to the actuator and from the actuator to the outlet, obtaining a double adjustable control on the actuator.

Add the letter \mathbf{C} to the identification code to request this device (see paragraph 4.1).

DSP*K*-*/C

dimensions in mm

	DSP5K* DSP5RK*	DSP7K*	DSP8K*	DSP10K*
А	280	319	401.5	520

9.2 - Control of the main spool shifting speed: D

By placing a MERS type double flow control valve between the pilot solenoid valve and the main distributor, the piloted flow rate can be controlled and therefore the changeover smoothness can be varied. Add the letter **D** to the identification code to request this device (see

dimensions in mm

	DSP5K* DSP5RK*	DSP7K*	DSP8K*	DSP10K*	
В	218.5	225.5	254.5	310.5	

9.3 - Subplate with throttle on line P

It is possible to introduce a subplate with a restrictor on line P between the pilot solenoid valve and the main distributor.

restrictor Ø0.8 for DSP5K*, DSP5RK*, DSP7K* e DSP8K* restrictor Ø1.5 for DSP10K*:

To request include in the code (par. 4.1):

P08 for DSP5K*, DSP5RK*, DSP7K* and DSP8K* P15 for DSP10K*

dimensions in mm

	DSP5K* DSP5RK*	DSP7K*	DSP8K*	DSP10K*
С	188.5	195.5	224.5	280.5

10 - DSP5K* AND DSP5RK* OVERALL AND MOUNTING DIMENSIONS

D*K* SERIES 10

11 - DSP7K* OVERALL AND MOUNTING DIMENSIONS

12 - DSP8K* OVERALL AND MOUNTING DIMENSIONS

13 - DSP10K* OVERALL AND MOUNTING DIMENSIONS

14 - OVERALL AND MOUNTING DIMENSIONS OF DSP*K* WITH SIDE CONNECTION

15 - MOUNTING SURFACES

DSP5K* CETOP 4.2-4 P05-320 65.1 54 50.8 37.3 27 t 16.7 3.2 21.4 6.3 2.4 11.1 Ø6.3 (max) P **Ф**ф ¢ ${\bf P}^{|{\bf B}|}$ ŧΦ 32.5 \downarrow^{A+C} 43.6 Optional 46 ΨΦ port 'T' ÿ∲∳ Ø11.2 (max) M6

DSP10K*

ISO 4401-10-09-0-05

(CETOP 4.2-4-10-350)

16 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

17 - INSTALLATION

Installation must adheres to instructions reported in the *Use and Maintenance manual*, always attached to the valve. Unauthorized interventions can be harmful to people and goods because of the explosion hazards present in potentially explosive atmospheres.

Configurations with centering and recall springs can be mounted in any position; The RK versions, without springs and with mechanical detent, must be mounted with the longitudinal axis horizontal.

Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

18 - MANUAL OVERRIDES

18.1 - CB - Blind ring nut

The metal ring nut protects the solenoid tube from atmospheric agents and isolates the manual override from accidental operations. The ring nut is tightened on a threaded fastener that keeps the coil in its position even without the ring nut.

To access the manual override loosen the ring nut and remove it; then reassemble hand tightening, until it stops.

Activate the manual override always and only with nonsparking tools suitable for use in potentially explosive atmospheres.

More information on safe use of explosion-proof components are provided in the instruction manual, always supplied with the valve.

18.2 - CK - Knob manual override

When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing. Available for DC valves only.

Spanner: 3 mm

18.3 - CH - Lever manual override

The lever manual override is available for DSE3K only. The seals choice leads the type of the standard ring nut to be mounted. The lever device is always placed at side A.

19 - CABLE GLANDS

Cable glands must be ordered separately; Duplomatic offers some types of cable glands with the following features:

- version for non-armoured cable, external seal on the cable (suitable for Ø8÷10 mm cables);
- ATEX II 2GD, I M2; IECEx Gb, Db, Mb; INMETRO Gb, Db, Mb certified
- cable gland material: nickel brass
- rubber tip material: silicone
- ambient temperature range: -70 °C ÷ +220 °C
- protection degree: IP66/IP68
- tightening torque: 15 Nm

To order, list the description and the code of the version chosen from among those listed below:

Description: CGK2/NB-01/10

Code: 3908108001

M20x1.5 - ISO 261 male thread, suitable for coils with T01 and S01 connections. It is supplied equipped with silicone seal, that must be assembled between the cable gland and the coil, so as to ensure IP66/IP68 protection degree.

Description: CGK2/NB-02/10

Code: 3908108002

Gk 1/2 - UNI EN 10226-2 male thread, suitable for coils with T02 and S02 connections. The customer must apply LOCTITE® 243™ threadlocker or similar between the cable gland connection thread and the coil in order to ensure IP66/IP68 protection degree.

Description: CGK2/NB-03/10

Code: 3908108003

1/2" NPT - ANSI B1.20.1 (ex ANSI B2.1), suitable for coils with T03 and S03 connections. The customer must apply LOCTITE® 243[™] threadlocker or similar between the cable gland connection thread and the coil in order to ensure IP66/IP68 protection degree.

Description: CGK2/NB-04/10

Code: 3908108004

M16x1.5 - ISO 261 male thread, suitable for coils with S04 connection. It is supplied equipped with silicone seal, that must be assembled between the cable gland and the coil, so as to ensure IP66/IP68 protection degree.

20 - SUBPLATES

(see catalogue 51 000)

	DS3K*	DL5BK*		DSP5K*	DSP7K*	DSP8K*
Type with rear ports	PMMD-AI3G	PMD4-AI4G	-	PME4-AI5G	PME07-AI6G	-
Type with side ports	PMMD-AL3G	-	PMD4-AL4G	PME4-AL5G	PME07-AL6G	PME5-AL8G
P, T, A, B ports dimensions X, Y ports dimensions	3/8" BSP -	3/4" BSP -	1/2"BSP -	3/4" BSP 1/4" BSP	1" BSP 1/4" BSP	1 ½" BSP 1/4" BSP

NOTE: Subplates (to be ordered separately) do not contain neither aluminium nor magnesium at a higher rate than the value allowed by norms according to ATEX directive for categories II 2GD and I M2.

The user must take care and make a complete assessment of the ignition risk, that can occur from the relative use in potentially explosive environments.

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

EXPLOSION-PROOF CLASSIFICATION for

SOLENOID AND PROPORTIONAL VALVES

ref. catalogues:

pressure valves

RQM*K*-P	21 515
PRE(D)*K*	81 315
ZDE3K*	81 515
DZCE*K*	81 605

directional valves		
	D*K*	41 515
	DS(P)E*K*	83 510

GENERAL INFO

This informative technical datasheet displays information about **classification and marking** of Duplomatic explosion-proof valves range.

Duplomatic offers valves with the following certifications:

ATEX	ll 2G	ll 2D	I M2
IECEx	Gb	Db	Mb
INMETRO	Gb	Db	Mb

Instructions for use and maintenance can be found in the related manuals, always supplied toghether with valves.

1 - ATEX CLASSIFICATION AND TEMPERATURES

Duplomatic certificates the combination valve-coil for the valves suitable for application and installation in potentially explosive atmospheres, according to ATEX directive; the supply always includes the declaration of conformity to the directive and the operating and maintenance manual, that contains all the information needed for a correct use of the valve in potentially explosive environments.

Coils assembled on these valves have been separately certified according to ATEX directive and so they are suitable for use in potentially explosive atmospheres.

1.1 - ATEX classification for valves

Type examination certificate: CEC 13 ATEX 030-REV.2

The valves are suitable for applications and installations in potentially explosive atmospheres that fall within:

ATEX II 2G ATEX II 2D	*KD2	equipment intended for use in areas in which explosive atmospheres caused by gases, vapours, mists or air/dust mixtures are likely to occur occasionally.
ATEX I M2	*KDM2	equipment intended for use in underground parts of mines as well as those parts of surface installations of such mines likely to be endangered by firedamp and/or combustible dust. This equipment is intended to be de-energised in the event of an explosive atmosphere.

1.2 - ATEX marking for valves

valve code		N and V seals	NL seals
*КО2	for gas	🕢 II 2G IIC T4 Gb (-20°C Ta +80°C)	€ II 2G IIC T4 Gb (-40°C Ta +80°C)
	for dusts	(Ex) II 2D IIIC T154°C Db IP66/IP68 (-20°C Ta +80°C)	(Ex) II 2D IIIC T154°C Db IP66/IP68 (-40°C Ta +80°C)
*KD2 /T5	for gas	🕢 II 2G IIC T5 Gb (-20°C Ta +55°C)	II 2G IIC T5 Gb (-40°C Ta +55°C)
for dusts	(Ex) II 2D IIIC T129°C Db IP66/IP68 (-20°C Ta +55°C)	(Ex) II 2D IIIC T129°C Db IP66/IP68 (-40°C Ta +55°C)	
*KDM2	mining	€ I M2 I T150°C Mb IP66/68 (-20°C Ta +75°C)	€ I M2 I T150°C Mb IP66/68 (-40°C Ta +75°C)

1.3 - ATEX classification of the coils

The coil of the explosion-proof valves is ATEX certified itself an as such is identified with its own tag, carries the relative ATEX marking. The mechanical construction of the coil housing is made in order to ensure its resistance to possible internal explosion and to avoid any explosion propagation to the outside environment, matching an "Ex d" type protection (explosion-proof coil).

Moreover, the solenoid is designed to maintain its surface temperature below the limits specified to the relevant class.

1.4 - ATEX marking on coils

for valve type * KD2	for gas	√Ex II 2G Ex d IIC T4 Gb (-40°C Ta +80°C)		
	for dusts			
for valve type *KD2 /T5	for gas	EX II 2G Ex d IIC T5 Gb (-40°C Ta +55°C)		
	for dusts	II 2D Ex tb IIIC T129°C Db IP66/IP68 (-40°C Ta +55°C)		
for valve type *KDM2	mining	Ex I M2 Ex d I T150°C Mb IP66/IP68 (-40°C Ta +75°C)		

1.5 - Operating temperatures

These valves are classified according to their maximum surface temperature (EN 13463-1), which must be lower than the ignition temperature of the gases, vapors and dusts for which the area in which they will be used is classified.

The valves in group II can also be used for less limiting temperature classes (surface temperature allowed higher).

		temperature range	N and V seals	NL seals	Temperature class	eligible also for
ATEX II 2G ATEX II 2D *KD2 /T5	*** •	of ambient	-20 / +80 °C	-40 / +80 °C	T4 (gas)	T3, T2, T1
	KD2	of fluid			T154°C (dusts)	T200°C and higher
	*KD2 /T5	of ambient	-20 / +55 °C	-40 / +55 °C	T5 (gas)	T4, T3, T2, T1
	ND2 /13	of fluid	-20 / +60 °C	-40 / +60 °C	T129°C (dusts)	T135°C and higher
ATEX I M2 *KDM	*KDM2	of ambient	-20 / +75 °C	-40 / +75 °C	T150°C	_
		of fluid	-207 -73 C	-407 773 C	1150 C	-

2 - IECEx CLASSIFICATION AND TEMPERATURES

The IECEx certification requires the classification of the electrical equipment only.

Duplomatic supplies valves with IECEx certified coils, suitable for application and installation in potentially explosive atmospheres. The mechanical construction of the coil housing is made in order to ensure its resistance to possible internal explosion and to avoid any explosion propagation to the outside environment, matching an "Ex db" type protection (explosion-proof coil).

Moreover, the solenoid is designed to maintain its surface temperature below the limits specified to the relevant class.

The supply always includes the operating and maintenance manual, that contains all the information needed for a correct use of the valve in potentially explosive environment.

2.1 - IECEx classification

Certificate of conformity (CoC): IECEx TUN 15.0028X

The valves are suitable for applications and installations in potentially explosive atmospheres that fall within:

IECEx Gb IECEx Db	*KXD2	equipment intended for use in areas in which explosive atmospheres caused by gases, vapours, mists or air/dust mixtures are likely to occur occasionally.
IECEx Mb	*KXDM2	equipment intended for use in underground parts of mines as well as those parts of surface installations of such mines likely to be endangered by firedamp and/or combustible dust. This equipment is intended to be de-energised in the event of an explosive atmosphere.

2.2 - IECEx marking

There is a plate with the IECEx mark on each coil.

* KXD2 valves	for gas	Ex db IIC T4 Gb (-40°C Ta +80°C)			
	for dusts	Ex tb IIIC T135°C Db (-40°C Ta +80°C)			
*KXD2 /T5 valves	for gas	Ex db IIC T5 Gb (-40°C Ta +55°C)			
	for dusts	Ex tb IIIC T100°C Db (-40°C Ta +55°C)			
* KDM2 valves	mining	Ex db I Mb (-40°C Ta +80°C)			

Conformity marking to the IECEx certification scheme

2.3 - Operating temperatures

These valves are classified according to their maximum surface temperature (EN 13463-1), which must be lower than the ignition temperature of the gases, vapors and dusts for which the area in which they will be used is classified.

	•		0 1	(b	,	
		temperature range	N and V seals	NL seals	Temperature class	eligible also for
*KXD2	of ambient	-20 / +80 °C	-40 / +80 °C	T4 (gas)	T3, T2, T1	
	of fluid			T135°C (dusts)	T200°C and higher	
IECEx Db	IECEx Db	of ambient	-20 / +55 °C	-40 / +55 °C	T5 (gas)	T4, T3, T2, T1
KAD2 /15	of fluid	-20 / +60 °C	-40 / +60 °C	T100°C (dusts)	T135°C and higher	
IECEx Mb *KXDM2	of ambient	20 / ±80 °C	40 / ±80 °C			
		of fluid	-207 -00 C	-407 780 C	-	-

Valves for surface plants can also be used for less limiting temperature classes (higher surface temperature allowed).

3 - INMETRO CLASSIFICATION AND TEMPERATURES

The INMETRO certification requires the classification of the electrical equipment only.

Duplomatic supplies valves with INMETRO certified coils, suitable for application and installation in potentially explosive atmospheres. The mechanical construction of the coil housing is made in order to ensure its resistance to possible internal explosion and to avoid any explosion propagation to the outside environment, matching an "Ex d" type protection (explosion-proof coil).

Moreover, the solenoid is designed to maintain its surface temperature below the limits specified to the relevant class.

The supply always includes the operating and maintenance manual, that contains all the information needed for a correct use of the valve in potentially explosive environment.

3.1 - INMETRO classification

Certificate of conformity: DNV 15.0094 X

The valves are suitable for applications and installations in potentially explosive atmospheres that fall within:

INMETRO Gb INMETRO Db	*KBD2	equipment intended for use in areas in which explosive atmospheres caused by gases, vapours, mists or air/dust mixtures are likely to occur occasionally.
INMETRO Mb	*KBDM2	equipment intended for use in underground parts of mines as well as those parts of surface installations of such mines likely to be endangered by firedamp and/or combustible dust. This equipment is intended to be de-energised in the event of an explosive atmosphere.

3.2 - INMETRO marking

There is a plate with the INMETRO mark on each coil.

* KBD2 valves	for gas	Ex d IIC T4 Gb (-40°C Ta +80°C)
	for dusts	Ex tb IIIC T154°C Db IP66/IP68 (-40°C Ta +80°C)
*KBD2 /T5	for gas	Ex d IIC T5 Gb (-40°C Ta +55°C)
valves	for dusts	Ex tb IIIC T129°C Db IP66/IP68 (-40°C Ta +55°C)
* KBDM2 valves	mining	Ex d I T150° Mb IP66/IP68 (-40°C Ta +75°C)

Db = equipment for explosive dust atmospheres - having a "high" leve of protection, which is not a source of ignition in normal operation or during expected malfunctions

3.3 - Operating temperatures

These valves are classified according to their maximum surface temperature (EN 13463-1), which must be lower than the ignition temperature of the gases, vapors and dusts for which the area in which they will be used is classified.

Valves for surface plants can also be used for less limiting temperature classes (higher surface temperature allowed).

		temperature range	N and V seals	NL seals	Temperature class	eligible also for
	*KBD2	of ambient	-20 / +80 °C	-40 / +80 °C	T4 (gas) T154°C (dusts)	T3, T2, T1
INMETRO Gb INMETRO Db		of fluid				T200°C and higher
	*KBD2 /T5	of ambient	-20 / +55 °C	-40 / +55 °C	T5 (gas)	T4, T3, T2, T1
		of fluid	-20 / +60 °C	-40 / +60 °C	T129°C (dusts)	T135°C and higher
	***	of ambient	20 / ±75 °C	40 / ±75 °C	T150°C	
	KDDIWIZ	of fluid	-20/+75°C	-407 +75 C	1150 C	-

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

EXPLOSION-PROOF CLASSIFICATION for

SOLENOID AND PROPORTIONAL VALVES

ref. catalogues:

pressure valves

RQM*K*-P	21 515
PRE(D)*K*	81 315
ZDE3K*	81 515
DZCE*K*	81 605

directional valves		
	D*K*	41 515
	DS(P)E*K*	83 510

GENERAL INFO

This informative technical datasheet displays information about **classification and marking** of Duplomatic explosion-proof valves range.

Duplomatic offers valves with the following certifications:

ATEX	ll 2G	ll 2D	I M2
IECEx	Gb	Db	Mb
INMETRO	Gb	Db	Mb

Instructions for use and maintenance can be found in the related manuals, always supplied toghether with valves.

1 - ATEX CLASSIFICATION AND TEMPERATURES

Duplomatic certificates the combination valve-coil for the valves suitable for application and installation in potentially explosive atmospheres, according to ATEX directive; the supply always includes the declaration of conformity to the directive and the operating and maintenance manual, that contains all the information needed for a correct use of the valve in potentially explosive environments.

Coils assembled on these valves have been separately certified according to ATEX directive and so they are suitable for use in potentially explosive atmospheres.

1.1 - ATEX classification for valves

Type examination certificate: CEC 13 ATEX 030-REV.2

The valves are suitable for applications and installations in potentially explosive atmospheres that fall within:

ATEX II 2G ATEX II 2D	*KD2	equipment intended for use in areas in which explosive atmospheres caused by gases, vapours, mists or air/dust mixtures are likely to occur occasionally.
ATEX I M2	*KDM2	equipment intended for use in underground parts of mines as well as those parts of surface installations of such mines likely to be endangered by firedamp and/or combustible dust. This equipment is intended to be de-energised in the event of an explosive atmosphere.

1.2 - ATEX marking for valves

valve code		N and V seals	NL seals
*КО2	for gas	🕢 II 2G IIC T4 Gb (-20°C Ta +80°C)	€ II 2G IIC T4 Gb (-40°C Ta +80°C)
	for dusts	(Ex) II 2D IIIC T154°C Db IP66/IP68 (-20°C Ta +80°C)	(Ex) II 2D IIIC T154°C Db IP66/IP68 (-40°C Ta +80°C)
*KD2 /T5	for gas	🕢 II 2G IIC T5 Gb (-20°C Ta +55°C)	II 2G IIC T5 Gb (-40°C Ta +55°C)
	for dusts	(Ex) II 2D IIIC T129°C Db IP66/IP68 (-20°C Ta +55°C)	(Ex) II 2D IIIC T129°C Db IP66/IP68 (-40°C Ta +55°C)
*KDM2	mining	€ I M2 I T150°C Mb IP66/68 (-20°C Ta +75°C)	€ I M2 I T150°C Mb IP66/68 (-40°C Ta +75°C)

1.3 - ATEX classification of the coils

The coil of the explosion-proof valves is ATEX certified itself an as such is identified with its own tag, carries the relative ATEX marking. The mechanical construction of the coil housing is made in order to ensure its resistance to possible internal explosion and to avoid any explosion propagation to the outside environment, matching an "Ex d" type protection (explosion-proof coil).

Moreover, the solenoid is designed to maintain its surface temperature below the limits specified to the relevant class.

1.4 - ATEX marking on coils

for valve type	for gas	√Ex II 2G Ex d IIC T4 Gb (-40°C Ta +80°C)	
*KD2	for dusts	(40°C Ta +80°C) II 2D Ex tb IIIC T154°C Db IP66/IP68 (-40°C Ta +80°C)	
for valve type	for gas	⟨Ex⟩ II 2G Ex d IIC T5 Gb (-40°C Ta +55°C)	
*KD2 /T5	for dusts	II 2D Ex tb IIIC T129°C Db IP66/IP68 (-40°C Ta +55°C)	
for valve type *KDM2	mining	Ex I M2 Ex d I T150°C Mb IP66/IP68 (-40°C Ta +75°C)	

1.5 - Operating temperatures

These valves are classified according to their maximum surface temperature (EN 13463-1), which must be lower than the ignition temperature of the gases, vapors and dusts for which the area in which they will be used is classified.

The valves in group II can also be used for less limiting temperature classes (surface temperature allowed higher).

		temperature range	N and V seals	NL seals	Temperature class	eligible also for
ATEX II 2G ATEX II 2D	*KD2	of ambient	-20 / +80 °C	-40 / +80 °C	T4 (gas)	T3, T2, T1
		of fluid			T154°C (dusts)	T200°C and higher
	*KD2 /T5	of ambient	-20 / +55 °C	-40 / +55 °C	T5 (gas)	T4, T3, T2, T1
		of fluid	-20 / +60 °C	-40 / +60 °C	T129°C (dusts)	T135°C and higher
ATEX I M2	*KDM2	of ambient	-20 / +75 °C	-40 / +75 °C	T150°C	_
		of fluid	-20/+/5 C	-407 773 0	1150 C	-

2 - IECEx CLASSIFICATION AND TEMPERATURES

The IECEx certification requires the classification of the electrical equipment only.

Duplomatic supplies valves with IECEx certified coils, suitable for application and installation in potentially explosive atmospheres. The mechanical construction of the coil housing is made in order to ensure its resistance to possible internal explosion and to avoid any explosion propagation to the outside environment, matching an "Ex db" type protection (explosion-proof coil).

Moreover, the solenoid is designed to maintain its surface temperature below the limits specified to the relevant class.

The supply always includes the operating and maintenance manual, that contains all the information needed for a correct use of the valve in potentially explosive environment.

2.1 - IECEx classification

Certificate of conformity (CoC): IECEx TUN 15.0028X

The valves are suitable for applications and installations in potentially explosive atmospheres that fall within:

IECEx Gb IECEx Db	*KXD2	equipment intended for use in areas in which explosive atmospheres caused by gases, vapours, mists or air/dust mixtures are likely to occur occasionally.
IECEx Mb	*KXDM2	equipment intended for use in underground parts of mines as well as those parts of surface installations of such mines likely to be endangered by firedamp and/or combustible dust. This equipment is intended to be de-energised in the event of an explosive atmosphere.

2.2 - IECEx marking

There is a plate with the IECEx mark on each coil.

* KXD2 valves	for gas	Ex db IIC T4 Gb (-40°C Ta +80°C)		
	for dusts	Ex tb IIIC T135°C Db (-40°C Ta +80°C)		
*KXD2 /T5 valves	for gas	Ex db IIC T5 Gb (-40°C Ta +55°C)		
	for dusts	Ex tb IIIC T100°C Db (-40°C Ta +55°C)		
*KDM2 valves mining Ex db I Mb (-40°C Ta +80°C)		Ex db I Mb (-40°C Ta +80°C)		

Conformity marking to the IECEx certification scheme

2.3 - Operating temperatures

These valves are classified according to their maximum surface temperature (EN 13463-1), which must be lower than the ignition temperature of the gases, vapors and dusts for which the area in which they will be used is classified.

	•		0 1	(b	,	
		temperature range	N and V seals	NL seals	Temperature class	eligible also for
IECEx Gb	*KXD2	of ambient	-20 / +80 °C	-40 / +80 °C	T4 (gas)	T3, T2, T1
		of fluid			T135°C (dusts)	T200°C and higher
IECEx Db	*KYD2 /T5	of ambient	-20 / +55 °C	-40 / +55 °C	T5 (gas)	T4, T3, T2, T1
	KAD2 /13	of fluid	-20 / +60 °C	-40 / +60 °C	T100°C (dusts)	T135°C and higher
IECEx Mb	*KXDM2	of ambient	20 / 190 °C	40 / 190 %		
		of fluid	-207 -00 C	-407 780 C	-	-

Valves for surface plants can also be used for less limiting temperature classes (higher surface temperature allowed).

3 - INMETRO CLASSIFICATION AND TEMPERATURES

The INMETRO certification requires the classification of the electrical equipment only.

Duplomatic supplies valves with INMETRO certified coils, suitable for application and installation in potentially explosive atmospheres. The mechanical construction of the coil housing is made in order to ensure its resistance to possible internal explosion and to avoid any explosion propagation to the outside environment, matching an "Ex d" type protection (explosion-proof coil).

Moreover, the solenoid is designed to maintain its surface temperature below the limits specified to the relevant class.

The supply always includes the operating and maintenance manual, that contains all the information needed for a correct use of the valve in potentially explosive environment.

3.1 - INMETRO classification

Certificate of conformity: DNV 15.0094 X

The valves are suitable for applications and installations in potentially explosive atmospheres that fall within:

INMETRO Gb INMETRO Db	*KBD2	equipment intended for use in areas in which explosive atmospheres caused by gases, vapours, mists or air/dust mixtures are likely to occur occasionally.
INMETRO Mb	*KBDM2	equipment intended for use in underground parts of mines as well as those parts of surface installations of such mines likely to be endangered by firedamp and/or combustible dust. This equipment is intended to be de-energised in the event of an explosive atmosphere.

3.2 - INMETRO marking

There is a plate with the INMETRO mark on each coil.

* KBD2 valves	for gas	Ex d IIC T4 Gb (-40°C Ta +80°C)
	for dusts	Ex tb IIIC T154°C Db IP66/IP68 (-40°C Ta +80°C)
*KBD2 /T5 valves	for gas	Ex d IIC T5 Gb (-40°C Ta +55°C)
	for dusts	Ex tb IIIC T129°C Db IP66/IP68 (-40°C Ta +55°C)
* KBDM2 valves	mining	Ex d I T150° Mb IP66/IP68 (-40°C Ta +75°C)

Db = equipment for explosive dust atmospheres - having a "high" leve of protection, which is not a source of ignition in normal operation or during expected malfunctions

3.3 - Operating temperatures

These valves are classified according to their maximum surface temperature (EN 13463-1), which must be lower than the ignition temperature of the gases, vapors and dusts for which the area in which they will be used is classified.

Valves for surface plants can also be used for less limiting temperature classes (higher surface temperature allowed).

		temperature range	N and V seals	NL seals	Temperature class	eligible also for
	*// 002	of ambient	-20 / +80 °C	-40 / +80 °C	T4 (gas) T154°C (dusts)	T3, T2, T1
INMETRO Gb	"KBD2	of fluid				T200°C and higher
INMETRO Db	*KBD2 /T5	of ambient	-20 / +55 °C	-40 / +55 °C	T5 (gas)	T4, T3, T2, T1
		of fluid	-20 / +60 °C	-40 / +60 °C	T129°C (dusts)	T135°C and higher
INMETRO Mb	***	of ambient	20 / ±75 °C	40 / ±75 °C	T150°C	
	NDDIVIZ	of fluid	-207 +73 C	-40/+75°C		-

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 600/113 ED

DSH* LEVER OPERATED DIRECTIONAL CONTROL VALVE

MOUNTING SURFACES

DSH3 ISO 4401-03 (CETOP 03) DSH5 ISO 4401-05 (CETOP 05)

p max (see performances table)Q nom (see performances table)

OPERATING PRINCIPLE

- The DSH∗ are lever operated directional control valves, available with 3 or 4 ways and with several types of interchangeable spools (1).
- The valve body (2) is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop.
- They are available with 2 or 3 positions with return spring or mechanical retention.
- On DSH3 version is possible to rotate the lever (3) by 180° compared with the standard position, depending on installation requirements (par. 7).

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

		DSH3	DSH5
Maximum working pressure: - P - A - B ports - T port	bar	350 210	320 160
Nominal flow rate	l/min	75 150	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree		according to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25	
Mass	kg	2.1	4.2

DSH*

1 - IDENTIFICATION CODE

2 - SPOOL TYPE

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE DROPS Δp -Q (values obtained with viscosity 36 cSt at 50 °C)

4.1 - DSH3

VALVE IN ENERGIZED POSITION

	F	FLOW DIRECTION				
SPOOL TYPE	P→A	P→B	A→T	B→T		
	CL	IRVES C	ON GRA	PH		
S1, SA1, SAK1	2	2	3	3		
S2, SA2, SAK2	1	1	3	3		
S3, SA3, SAK3	3	3	1	1		
S4, SA4, SAK4	4	4	4	4		
TA, TAK	3	3	3	3		
TA02, TAK02	2	2	2	2		
TA23, TAK23	3	3				

VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL TYPE	P→A	Р→В	A→T	B→T	P→T	
	CURVES ON GRAPH					
S2, SA2, SAK2					2	
S3, SA3, SAK3			3	3		
S4, SA4, SAK4					3	

4.2 - DSH5

∆p [bar] 22 6 Q [l/min]

VALVE IN ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL TYPE	P→A	P→B	A→T	B→T		
	CURVES ON GRAPH					
S1, SK1	2	2	1	1		
S2, SK2	3	3	1	1		
S3, SK3	3	3	2	2		
S4, SK4	1	1	2	2		
TA, TAK	3	3	2	2		

VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION				
SPOOL TYPE	P→A	Р→В	A→T	B→T	P→T
	CURVES ON GRAPH				
S2, SK2					5
S3, SK3			6	6	
S4, SK4					5

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm, with mineral oil viscosity 36 cSt at 50 °C and filtration ISO 4406:1999 class 18/16/13.

SPOOL TYPE CURVE		
	P→A	P→B
S1, SK1, SA1, SAK1	1	1
S2, SK2, SA2, SAK2	1	1
S3, SK3, SA3, SAK3	1	1
S4, SK4, SA4, SAK4	2	2

SPOOL TYPE	CURVE		
	P→A	Р→В	
TA, TAK	1	1	
TA02, TAK02	1	1	
TA23, TAK23	1	1	

5.2 - DSH5

SPOOL TYPE	CURVE		
	P→A	P→B	
S1, SK1, SA1, SAK1	1	1	
S2, SK2, SA2, SAK2	1	1	
S3, SK3, SA3, SAK3	1	1	
S4 SK4 SA4 SAK4	2	2	

SPOOL TYPE	CURVE		
	P→A	Р→В	
TA, TAK	1	1	

NOTE: Values in the graphs are relevant to the standard valve. The operating limits can be considerably reduced if a 4-way valve is used with port A or B plugged.

6 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; valves with mechanical detent must be mounted with the longitudinal axis horizontal.

Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

DSH*

7 - OVERALL AND MOUNTING DIMENSIONS DSH3

NOTE: The valve is supplied with the hand lever oriented in a perpendicular position with respect to the mounting surface (as indicated in the above drawing). For installation needs the hand lever can be oriented by the user directly at 180° to the standard position, simply by unscrewing the lever and re-screwing it in the desired position.

DSH*

8 - OVERALL AND MOUNTING DIMENSIONS DSH5

9 - SUBPLATES (See catalogue 51 000)

	DSH3	DSH5
Type with rear ports	PMMD-AI3G	PMD4-AI4G - 3/4" BSP threaded
Type with side ports	PMMD-AL3G	PMD4-AL4G - 1/2" BSP threaded
P, T, A and B threads	3/8" BSP	

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 605/113 ED

DSH3L LEVER OPERATED DIRECTIONAL CONTROL VALVE SERIES 10

MOUNTING SURFACE ISO 4401-03 (CETOP 03)

p max (see performances table)Q nom 60 l/min

OPERATING PRINCIPLE

- DSH3L are lever (3) operated directional control valves, available with the more common types of spools (1).
- The valve body (2) is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop.
- They are available with 2 or 3 positions with return spring or mechanical retention.
- Upon request we can supply these valves with zinc-nickel surface treatment.

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

Maximum working pressure: - P - A - B ports - T port	bar	350 210
Nominal flow rate	l/min	60
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree		according to ISO 4406:1999 class 20/18/15
Recommended viscosity	cSt	25
Mass	kg	1.4

1 - IDENTIFICATION CODE

2 - SPOOL TYPE

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE DROPS △p-Q (values obtained with viscosity 36 cSt at 50 °C)

VALVE IN ENERGIZED POSITION

	FLOW DIRECTION			
SPOOL TYPE	P→A	P→B	A→T	B→T
	CURVES ON GRAPH			
S1, SK1	2	2	3	3
S2, SK2	1	1	3	3
S3, SK3	3	3	1	1
S4, SK4	4	4	4	4
TA, TAK	3	3	3	3

VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION				
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T
	CURVES ON GRAPH				
S2, SK2					2
S3, SK3			3	3	
S4, SK4					3

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm, with mineral oil viscosity 36 cSt at 50 $^{\circ}$ C and filtration ISO 4406:1999 class 18/16/13.

SPOOL TYPE	CURVE	
	P→A	P→B
S1, SK1	1	1
S2, SK2	1	1
S3, SK3	1	1
S4, SK4	1	1

	SPOOL TYPE	CURVE	
З		P→A	Р→В
	TA, TAK	1	1

6 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; valves with mechanical detent must be mounted with the longitudinal axis horizontal.

Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

DSH3L SERIES 10

7 - OVERALL AND MOUNTING DIMENSIONS

8 - SUBPLATES (see catalogue 51 000)

- Type with rear ports: PMMD-AI3G
- Type with side ports: PMMD-AL3G
- P, T, A and B threads: 3/8" BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 610/112 ED

MOUNTING INTERFACE

PERFORMANCE RATINGS

(obtained with mineral oil with viscosity of 36 cSt at 50°C)

Maximum operating pressure: - P A B ports - T ports	bar	350 25
Nominal flow rate	l/min	75
Pressure drop ∆p-Q	see p	bar. 4
Operating limits	see p	bar. 5
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	according to 1999 class	o ISO 4406: s 20/18/15
Recommended viscosity	cSt	25
Mass: DSR3L-TA DSR3L-R DSR3H-TA	kg	1,1 1,2 1,2

DSR3 ROLLER CAM OPERATED DIRECTIONAL CONTROL VALVE SERIES 11

SUBPLATE MOUNTING ISO 4401-03 (CETOP 03)

p max **350** bar **Q** nom **75** l/min

OPERATING PRINCIPLE

- The DSR3* are roller cam operated directional control valves, available with 4 ways, with mounting interface according to ISO 4401 (CETOP RP121H) standards.
- The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop.
- It is available in LIGHT (short) and HEAVY DUTY (long) versions, with 2 positions with return spring or with 2 positions with double mechanical command.
- The roller of the valve operating device can be positioned at 90° with respect to the valve mounting surface, in order to achieve flexible installation.
- This type of valve can be used as a hydraulic stroke end for cylinders, speed selectors (not compensated), hydraulic safety devices, directional control of hydraulic axes.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

- PRESSURE DROPS	$\Delta \mathbf{p} \textbf{-} \mathbf{Q}$	(obtained wi	ith viscosity	36 cSt a	at 50 °C	C)
------------------	---	--------------	---------------	----------	----------	----

	FLOW DIRECTION			
SPOOL TYPE	P→A	Р→В	A→T	B→T
	CURVES ON GRAPH			
DSR3L-TA	1	1	1	1
DSR3L-R	1	1	1	1
DSR3H-TA	1	1	1	1

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm, with mineral oil viscosity 36 cSt at 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

SPOOL TYPE	CURVE		
	P→A	P→B	
DSR3L-TA	2	2	
DSR3L-R	1	1	
DSR3H-TA	1	1	

6 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type R valves - without springs - must be mounted with the longitudinal axis horizontal. Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

7 - OVERALL AND MOUNTING DIMENSIONS

8 - VALVE FASTENING BOLTS

N. 4 fastening bolts SHC ISO 4762 M5x30 Tightening torque 5 Nm (bolts A 8.8)

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com 9 - SUBPLATES (see catalogue 51 000)

Type PMMD-AI3G with rear ports 3/8" BSP Type PMMD-AL3G with side ports 3/8" BSP
41 620/112 ED

DSA* PNEUMATICALLY OPERATED DIRECTIONAL CONTROL VALVE

 SUBPLATE MOUNTING

 DSA3
 ISO 4401-03 (CETOP 03)

 DSA5
 ISO 4401-05 (CETOP R05)

p max (see performances table)Q nom (see performances table)

OPERATING PRINCIPLE

- The DSA* are pneumatically operated (1) directional control valves, available with 3 or 4 ways with several interchangeable spools (2) and with mounting interface according to ISO 4401 (CETOP RP121H) standards.
- The valve body (3) is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop.
- It is available with 2 or 3 positions with return spring, or with 2 positions with mechanical retention.
- The Y external drain is available (standard) for the ISO 4401-05 (CETOP R05) size and it must be connected when there is backpressure higher than 25 bar on the T port.

PERFORMANCES (with mineral oil of viscosity 36 cSt at 50°C)

		DSA3	DSA5
Maximum working pressure: - P, A, B ports - T port without Y external drain - T port with Y external drain (available for DSA5 only)	bar	350 25 -	320 25 320
Piloting pressure: - min - max	bar	4 12	4,5 12
Nominal flow rate	l/min	75	120
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt 25		
Mass: single operator valve dual operator valve	kg	1,3 1,7	3,2 4,0

1 - IDENTIFICATION CODE

2 - MOUNTING INTERFACE

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - SPOOL TYPE

Туре S *:		
2 operations - 3 positions		
with spring contening		
$a \xrightarrow{A} B$ $a \xrightarrow{D} b \xrightarrow{P} b$		
s2 -		
s4		
S6 - XIIIIIII		
s7		

Type **RK**: 2 operations - 2 positions with mechanical retention

1 operation side B 2 positions (central + external) with spring centering

Type **TA**: 1 operation side A 2 external positions with return spring

Type **TB**: 1 operation side B 2 external positions with return spring

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification and operating limits.

5 - PRESSURE DROPS Δ p-Q (values obtained with viscosity 36 cSt at 50 °C) 5.1 - DSA3

For pressure drops between A and B lines of spools S10, S20, S21, S22 and S23, which are used in the regenerative diagram, refer to curve 5.

	FLOW DIRECTION			
SPOOL TYPE	P→A	P→B	A→T	B→T
		CURVES (ON GRAPH	
S1, SA1, SB1	2	2	3	3
S2, SA2, SB2	1	1	3	3
S3, SA3, SB3	3	3	1	1
S4, SA4, SB4	5	5	5	5
S5	2	1	3	3
S6	2	2	3	1
S7, S8	4	5	5	5
S9	2	2	3	3
S10	1	3	1	3
S11	2	2	1	3
S12	2	2	3	3
S17	2	2	3	3
S18	1	2	3	3
S19	2	2	3	3
S20	1	5	2	
S21	5	1		2
S22	1	5	2	
S23	5	1		2
TA, TB	3	3	3	3
TA02, TB02	2	2	2	2
TA23, TB23	3	3		
RK	2	2	2	2
RK02	2	2	2	2
RK1, 1RK	2	2	2	2

PRESSURE DROPS WITH VALVE IN ENERGIZED POSITION

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

		FLOW DIRECTION			
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T
		CURV	ES ON (GRAPH	
S2, SA2, SB2					2
S3, SA3, SB3			3	3	
S4, SA4, SB4					5
S5		4			
S6				3	
S7, S8			6	6	5
S10	3	3			
S11			3		
S18	4				
S22			3	3	
S23			3	3	

DSA*

5.2 - DSA5

PRESSURE DROPS WITH VALVE IN ENERGIZED POSITION

		FLOW DI	RECTION	
SPOOL TYPE	P→A	P→B	A→T	B→T
		CURVES C	ON GRAPH	
S1, SA1, SB1	2	2	1	1
S2, SA2, SB2	3	3	1	1
S3, SA3, SB3	3	3	2	2
S4, SA4, SB4	1	1	2	2
S5	2	1	1	1
S6, S11	3	3	2	2
S7, S8	1	1	2	2
S9	3	3	2	2
S10	1	1	1	1
S12	2	2	1	1
S17, S19	2	2	1	1
S18	1	2	1	1
S20, S21				
S22, S23				
TA, TB	3	3	2	2
TA02, TB02	3	3	2	2
TA23, TB23	4	4		
RK	3	3	2	2
RK02	3	3	2	2
RK1, 1RK	3	3	2	2

	FLOW DIRECTION				
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T
		CUR\	/ES ON G	RAPH	
S2, SA2, SB2					5
S3, SA3, SB3			6	6	
S4, SA4, SB4					5
S5		3			
S6				6	
S7					5
S10	3	3			
S11			6		
S18	3				
S22					
S23					

6 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm, with mineral oil viscosity 36 cSt at 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

6.1 - DSA3

SPOOL TYPE	CURVE	
	P→A	P→B
S1,SA1,SB1	1	1
S2, SA2, SB2	1	1
S3, SA3, SB3	2	2
S4, SA4, SB4	3	3
S5	1	1
S6	3	2
S7	3	3
S8	3	3
S9	1	1
S10	1	1
S11	2	3
S12	1	1

SPOOL TYPE	CURVE		
	P→A	P→B	
S17	1	1	
S18	1	1	
S19	1	1	
S20	4	4	
S21	4	4	
S22	5	4	
S23	4	5	
TA, TB	1	1	
TA02, TB02	1	1	
TA23, TB23	1	1	
RK	1	1	
RK02	1	1	
RK1, 1RK	1	1	

6.2 - DSA5

SPOOL TYPE	CURVE	
	P→A	P→B
S1,SA1,SB1	1	1
S2, SA2, SB2	1	1
S3, SA3, SB3	3 *	3 *
S4, SA4, SB4	4	4
S5		
S6		
S7		
S8		
S9		
S10		
S11		
S12		

SPOOL TYPE	CURVE	
	P→A	Р→В
S17		
S18		
S19		
S20		
S21		
S22		
S23		
TA, TB	2 *	2 *
TA02, TB02		
TA23, TB23		
RK		
RK02		
RK1, 1RK		

* **NOTE:** for spools S3 and TA, the curve has been obtained with a min. piloting pressure of 4,5 bar. If the minimum piloting pressure used is 5,5 bar, refer to the curve n° 1 (320 bar - 120 l/min).

NOTE: The values indicated in the graphs are relevant to the standard valve. The operating limits can be considerably reduced if a 4-way valve is used with port A or B plugged or without flow.

7 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

8 - DSA3 OVERALL AND MOUNTING DIMENSIONS

DSA*

9 - DSA5 OVERALL AND MOUNTING DIMENSIONS

10 - SUBPLATES (see catalogue 51 000)

	DSA3	DSA5
Type with rear ports	PMMD-AI3G	PMD4-AI4G - 3/4" BSP threaded
Type with side ports	PMMD-AL3G	PMD4-AL4G - 1/2" BSP threaded
Threading of ports P, T, A and B	3/8" BSP	

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 630/112 ED

MOUNTING SURFACE

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum working pressure: - P A B ports - T port	bar	350 25	
Piloting pressure - min - max	bar	15 (NOTE 1) 210	
Nominal flowrate	l/min	75	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass: single operation valve double operation valve	kg	1,3 1,7	

DSC3 HYDRAULICALLY OPERATED DIRECTIONAL CONTROL VALVE

SERIES 11

SUBPLATE MOUNTING ISO 4401-03 (CETOP 03)

- **p** max (see performances table)
- **Q** nom (see performances table)

OPERATING PRINCIPLE

- The DSC3 are hydraulically operated directional control valves, available with 3 or 4 ways with several interchangeable spools and with mounting interface according to ISO 4401 (CETOP RP121H) standards.
- The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop.
- It is available with 2 or 3 positions with return spring, or with two positions with mechanical retention.

NOTE 1: The piloting pressure must be higher than the counterpressure on T port, of 15 bar at least: to allow the cursor reversal at middle the piloting pressure has to lower quickly at 0 bar.

The piston return spring generates a minimum backpressure of 0.5 bar on the piloting line.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification and operating limits.

4 - PRESSURE DROPS Δ p-Q (values obtained with viscosity 36 cSt at 50 °C)

PRESSURE DROPS WITH VALVE IN ENERGIZED POSITION

	FLOW DIRECTION			
SPOOL TYPE	P→A	Р→В	A→T	B→T
	C	URVES (ON GRAF	РΗ
S1, SA1, SB1	2	2	3	3
S2, SA2, SB2	1	1	3	3
S3, SA3, SB3	3	3	1	1
S4, SA4, SB4	4	4	4	4
TA, TB	3	3	3	3
TA02, TB02	2	2	2	2
TA23, TB23	3	3		
RK	2	2	2	2

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION				
SPOOL TYPE	P→A	Р→В	A→T	B→T	P→T
	CURVES ON GRAPH				
S2, SA2, SB2					2
S3, SA3, SB3			3	3	
S4, SA4, SB4					3

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values indicated in the graphs are relevant to the standard solenoid valve. The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow. The values have been obtained according to ISO 6403 norm, with mineral oil viscosity 36 cSt at 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

SPOOL TYPE	CURVE		
	P→A	Р→В	
S1,SA1,SB1	1	1	
S2, SA2, SB2	2	2	
S3, SA3, SB3	1	1	
S4, SA4, SB4	2	2	

SPOOL TYPE	CURVE		
	P→A	P→B	
TA, TB	1	1	
TA02, TB02	2	2	
TA23, TB23	1	1	
RK	3	3	

NOTE: The values indicated in the graphs are relevant to the standard valve. The operating limits can be considerably reduced if a 4-way valve is used with port A or B plugged or without flow.

6 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal. Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

7 - OVERALL AND MOUNTING DIMENSIONS

8 - VALVE FASTENING BOLTS

N. 4 fastening bolts SHC ISO 4762 M5x30 Tightening torque 5 Nm (bolts A 8.8)

9 - SUBPLATES (see cat. 51 000)

PMMD-AI3G Type with rear ports
PMMD-AL3G Type with side ports
Threading of ports P, T, A, B: 3/8" BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 630/112 ED

DSB* SELF-REVERSING VALVE SERIES 10

 MOUNTING SURFACES

 DSB3
 ISO 4401-03 (CETOP 03)

 DSB5
 ISO 4401-05 (CETOP 05)

p max (see performances table)Q nom (see performances table)

OPERATING PRINCIPLE

- The DSB* are directional control valves with self-reversing spool and mounting interface according to ISO 4401-03 and 4401-05 (CETOP RP121H) standards.
- The valves realize the reciprocation of the flow direction when the flowrate stops in A or B line (f.e., when a cylinder reaches the end stroke). The reversing process is independent of the line pressure.

HYDRAULIC SYMBOL

PERFORMANCES

(measured with mineral oil of viscosity 36 cSt at 50°C)

		DSB3	DSB5	
Maximum operating pressure on port P	bar	350 320		
Minimum allowed pressure	bar	50 60		
Maximum flow rate	l/min	30 100		
Minimum allowed flow rate	l/min	3 10		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Recommended viscosity	cSt	25		
Fluid contamination degree		according to ISO 4406:1999 class 20/18/15		
Mass	kg	0,9 2,8		
Surface finishing		zinc-nickel surface treatment		

1 - IDENTIFICATION CODE

2 - PRESSURE DROPS Δp -Q

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

DSB* SERIES 10

5 - OVERALL AND MOUNTING DIMENSIONS DSB3

DSB* SERIES 10

5 - OVERALL AND MOUNTING DIMENSIONS DSB5

6 - KNOB MANUAL OVERRIDE

The knob manual override CK allows to set the pressure of the relief valve without using shut-off valves.

DSB* SERIES 10

Surface finishing

0.8

0.01/100

7 - INSTALLATION

The valves can be mounted in any position. Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

We suggest to use the circuits shown, connecting the A port with the rear chamber of the cylinder. In this way, with the start of the pump, the valve places itself, so as to retract the rod. To work properly the valve needs an area ratio of the cylinder chambers included between 1:1,25 and 1:2.

7.1 - Standard valve

To set the system relief valve correctly, the self-reversing function must be inactive.

To do so, close the shut-off valve, start the pump, set the pressure relief valve and stop the pump. Then, open the shut-off valve and restart the pump.

7.2 - Valve with knob manual override

To set the system relief valve correctly, the self-reversing function must be inactive.

To do so, completely unscrew the set screw then tighten the knob until it is at mechanical stop. The spool is now clamped in position $P \rightarrow B$ and $A \rightarrow T$. Start the pump, set the pressure of the relief valve and then stop the pump. Reestablish the working conditions of the valve, unscrewing almost completely the knob and screwing the set screw, until its point is aligned with the edge of the knob.

The valve is in normal working conditions when the knob is tightened and the point of the set screw is aligned with the edge of the knob.

Do not use the manual override when the valve is on: if it is necessary stop the pump.

8 - SUBPLATES (see catalogue 51 000)

	DSB3	DSB5
Type with rear ports	PMMD-AI3G	PMD4-AI4G - 3/4" BSP threaded
Type with side ports	PMMD-AL3G	PMD4-AL4G - 1/2" BSP threaded
Threading of ports P, T, A, B	3/8" BSP	-

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24

Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

42 200/115 ED

MOUNTING INTERFACE

PERFORMANCES

(measured with mineral oil of viscosity 36 cSt at 50°C)

Maximum operating pressure	bar 250		
Maximum flow rate	l/min	25	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass	kg	1,3	

DT03 POPPET TYPE SOLENOID OPERATED DIRECTIONAL CONTROL VALVE SERIES 10

SUBPLATE MOUNTING ISO 4401-03 (CETOP 03)

p max 250 bar Q max 25 l/min

OPERATING PRINCIPLE

- Direct-acting control valve with conical seat seal.
- Two- or three-way versions with possibility of seal in both directions for two-way valves.
- Leakproof solenoids in oil bath, available in alternating and direct current supply voltages.

HYDRAULIC SYMBOLS

42 200/115 ED

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES

(values obtained with viscosity 36 cSt at 50 $^\circ\text{C}$)

	Curve on graph			
valve	De-energized solenoid	Energized solenoid		
DT03-3A	1	3		
DT03-3B	2	3		
DT03-3C	1	3		
DT03-3D	2	3		
DT03-2E	-	3		
DT03-2F	1	-		
DT03-2G	-	3		
DT03-2H	1	-		

valve	Curve on graph
DT03-3A	2
DT03-3B	1
DT03-3C	1
DT03-3D	1
DT03-2E	1
DT03-2F	2
DT03-2G	1
DT03-2H	1

3 - FLOW LIMITATION

When the solenoid valve is fed by an accumulator or by high delivery pumps it is necessary to limit the flow to the working limits by means of orifices. The orifice must be located on the accumulator side always.

WARNING! During the transition from one to the other end position all ports are interconnected. This means that during the switching the oil will be flowing from the accumulator to the tank through the valve, until the swithing is completed.

That is why the maximum flow should be limited up to 12 l/min by placing orifices.

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

5 - ELECTRICAL FEATURES

5.1 - Solenoids

These are essentially made up of two parts: tube and coil.

The tube is threaded onto the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded nut, and can be turned 360° on its axis, compatible with space available.

The interchangeability of coils of different voltages is allowed within the same type of supply current: alternating or direct (DC / RAC).

NOTE: The protection degree is guaranteed only with connector correctly mated and installed.

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION: Atmospheric agents (EN 60529) Coil insulation (VDE 0580) Impregnation	IP 65 (NOTE) class H class F

5.2 - Current and power consumption

The table shows the consumption values for the different coil type.

It is necessary to always use "D" type connectors (with rectifier incorporated) and RAC coils for alternating current supply.

Rectified current supply takes place by using a bridge rectifier bridge, externally or fitted within the "D" type connectors, between the alternating current source (24V or 110V, /50 or /60 Hz) and the coil.

Coil	Voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt. [W]	Coil code
12V-CC	12	5,6	2,14	25,7	1902050
24V-CC	24	21,8	1,10	26,4	1902051
24RAC	24	17	1,23	26	1902052
110RAC	110	420	0,23	22	1902053
220RAC	220	1750	0,11	22	1902054

5.3 - Switching times

The values indicated refer to a flow rate of Q = 10 l/min, p = 210 bar working with mineral oil at a temperature of 50° C, a viscosity of 36 cSt and supply voltage equal to 90% of the nominal voltage.

TIMES (±10%)	ENERGIZING	DE-ENERGIZING
	30 ms	50 ms

5.4 - Electric connectors

The solenoid valves are never supplied with connector.

Connectors must be ordered separately. See catalogue 49 000.

6 - OVERALL AND MOUNTING DIMENSIONS

7 - APPLICATION EXAMPLES

42 250/110 ED

MDT POPPET TYPE SOLENOID OPERATED DIRECTIONAL CONTROL VALVE

SERIES 10

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 250 bar Q max 25 l/min

MOUNTING INTERFACE

VALVE CONFIGURATIONS (see Hydraulic symbols table)

Configuration "SA": utilized when line A flow is to be controlled. Configuration "SB": utilized when line B flow is to be controlled. Configuration "D": utilized when flows of lines A and B are to be controlled

PERFORMANCE RATINGS (working with mineral oil of viscosity of 36 cSt at 50°C)

Maximum operating pressure	bar	250		
Maximum flow rate in controlled lines Maximum flow rate in free lines	l/min	25 65		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	25		
Mass MDT-D MDT-SA/SB	kg	1,7 1,2		

OPERATING PRINCIPLE

- Direct-acting control valve with conical seat seal, for maintaining hydraulic actuators in position.
- Two-way execution, normally closed, with seal in both directions when solenoid is de-energized.
- Leakproof solenoids in oil bath, available in AC and DC supply voltages.

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODE

NOTE: The solenoid valves are never supplied with connector. Connectors must be ordered separately. To identificate the connector type to be ordered, please see catalogue 49 000.

2 - CHARACTERISTIC CURVES (values obtained with viscosity 36 cSt at 50°C)

3 - SUPPLY VOLTAGES

A connector with bridge rectifier and RAC coils are always used for alternating current supply.

Times ±10%	
Energizing	30 ms
De-energizing	50 ms

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

5 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

43 100/116 ED

KT08 CARTRIDGE SOLENOID VALVE SERIES 10

CARTRIDGE TYPE seat 3/4-16 UNF-2B ISO 725

p max **350** bar **Q** nom **50** l/min

OPERATING PRINCIPLE

- The KT08 is a 2-ways solenoid valve, poppet type, cartridge execution, available in normally closed version (NC) and normally open version (NO) with nominal flow rate of 50 l/min.
- It ensures a low internal leakage, which decreases while the pressure increases.
- The valve can be ordered with direct current or rectified current solenoids and with five different types of electrical connections, in order to cover many installation requirements (see paragraph 8).
- For every version, the emergency manual override is an available option (see paragraph 7).

PERFORMANCES (working with mineral oil of viscosity of 36 cSt at 50°C)

Maximum operating pressure	bar	350		
Nominal flow rate	l/min	50		
Pressure drops ∆p - Q	see paragraph 3			
Electrical characteristics	see paragraph 5			
Electrical connections	see	paragraph 8		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	25		
Mass	kg	0,32		
Surface treatment with white colour zinc	Fe / Zn 8c 1B UNI ISO 2081/4520			

HYDRAULIC SYMBOLS

43 100/116 ED

1 - IDENTIFICATION CODE

1.1 - Coil identification code

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - PRESSURE DROPS Δp -Q (obtained with viscosity of 36 cSt at 50 °C)

The values in graphs refer to both NC and NO valves and they differ for the mounting interface used.

oversize mounting interface dimensions 3/4-16 UNF-2B ISO 725 dimensions in mm

4 - SWITCHING TIMES

The values indicated refer to a valve tested with Q = 25 l/min, p = 350 bar, working with mineral oil at a temperature of 50°C and a viscosity of 36 cSt.

TIMES (±10%)					
	ENERGIZING DE-ENERGIZI				
KT08-2NC	60 ms	85 ms			
KT08-2NO	85 ms	60 ms			

5 - ELECTRICAL FEATURES

5.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded onto the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded nut, and can be rotated according to the available space.

The interchangeability of coils of different voltages both D or R type is possible without removing the tube.

Protection according CEI EN 60529 - atmospheric agents

Connector	IP 65	IP 67	IP 69 K
K1 DIN 43650	x		
K2 AMP JUNIOR	x	x	
K4 outgoing cables	х	x	
K7 DEUTSCH DT04 male	x	х	x
K8 AMP SUPER SEAL	х	х	х

NOTE: The protection degree is guaranteed only if the connector is correctly installed and locked.

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95/CE
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation	class H class H

5.2 - Current and absorbed power

In the table are shown current and power consumption values relevant to the different coil types. "R" coil must be used when the valve is fed with AC power supply subsequently rectified by means of rectifier bridge, externally or incorporated in the "D" type connector (see cat. 49 000).

	Resistance at 20°C	Resistance at 20°C Absorbed current Absorbed power Coil code							
	[Ω] (±1%)	[A] (±5%)	[W]	[VA]	K1	K2	K4	K7	K8
C14L3-D12*	5,4	2,2	26,5		1902740	1902750	1902770	1902980	1903020
C14L3-D24*	20,7	1,16	27,8		1902741	1902751	1902771	1902981	1903021
C14L3-R110*	363	0,25		27,2	1902742				
C14L3-R230*	1640	0,11		26,4	1902743				

6 - OVERALL AND MOUNTING DIMENSIONS

7 - MANUAL OVERRIDE

8 - ELECTRIC CONNECTIONS

9 - ELECTRIC CONNECTORS

The solenoid valves are supplied without connectors. For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see catalogue 49 000.

For K2, K7 and K8 connection type the relative connectors are not available.

CM for NC version (screw type)

connection for AMP JUNIOR connector code ${\rm K2}$

connection for DEUTSCH DT04-2P male connector code **K7**

10 - SUBPLATES FOR MODULAR MOUNTING

10.1 - Identification code

MOUNTING INTERFACE

HYDRAULIC SYMBOLS

10.4 - Overall and mounting dimensions KTM3-D, KTM3-RD and KTM3-SB

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

43 100/116 ED

44 100/116 ED

BD6 BANKABLE DIRECTIONAL CONTROL VALVE SERIES 20

p max 280 bar Q max 40 l/min

OPERATING PRINCIPLE

- The directional control valve BD6 is a bankable valve very well-rounded thanks to its modular design.
- This valve has been designed to be assembled with series or parallel connection, mounting up to 6 body-modules.
- The BD6 valve is suitable for compact applications in the mobile and mini-power pack industries.
- The intake ports A and B, the inlet P and the outlet T are 3/8" BSP threaded.
- A version with built-in pilot check valves is available for the series configuration.
- The series configuration allows a max operating pressure of 250 bar.

PERFORMANCES

(obtained with mineral oil with viscosity of 36 cSt at 50°C)

Maximum operating pressure: - P-A-B ports (parallel) - P-A-B ports (series) - T and T1 ports	bar 280 250 250		
Maximum flowrate: - parallel - series	l/min	40 25	
Pressure drops ∆p - Q	see	paragraph 3	
Electrical characteristics	see	paragraph 6	
Operating limits	see paragraph 5		
Electrical connections	see paragraph 9		
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Single body mass	kg	1,84	
Surface treatment of body and plates	galvanized, zinc-nickel		

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODES FOR LOOSE MODULES

Here below all the loose components identification codes of the bankable valve are shown. To order a whole assembled valve, please use the codes at paragraphs 11 and 12.

The pressure control valve and the poppet type valve with unloading function are briefly described. Fore more detailed information about them please see the 21 100 data sheet for the pressure control valve and the 43 100 for the unloading valve.

1.1 - Valve body

NOTE: A galvanic surface treatment zinc-nickel is applied to modules and plates, making the valve suitable to withstand a salt spray exposure time of 600 hours (test carried out according to the UNI EN ISO 9227 and assessment test carried out according to the UNI EN ISO 10289).

1.2 - Coil identification code

1.3 - Available spool type for parallel configuration BD6P

1.4 - Available spool type for series configuration BD6S

1.4 - Inlet plate with pressure control valve for parallel connection

1.5 - Inlet plate with pressure control valve and unloading for parallel connections

1.6 - End plate module for parallel connections

1.7 - Inlet module with pressure control valve for series connection

1.8 - Outlet end plate for series connection

1.9 - Studs and fixing kit

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - CHARACTERISTIC CURVES (values obtained with viscosity 36 cSt at 50 °C)

3.1 - Body modules pressure drops Δp -Q

4 - SWITCHING TIMES

Values obtained according to ISO 6403, with mineral oil with viscosity 36 cSt at 50°C.

ENERGIZED VALVE

	FLOW DIRECTION				
SPOOL TYPE	P→A	P→B	A→T	B→T	
	CURVES ON GRAPHS				
S1, SA1, SB1	2	2	1	1	
S3, SA3, SB3	2	2	1	1	
C3	5	5	3	3	
TA, TB	4	4	1	1	
TA02, TB02	4	4	1	1	
TA23, TB23	4	4			
RK	2	2	1	1	
S4, SA4, SB4	8	8	8	8	

NOTE: The curve 6 shows the pressure drops in path P or T.

DE-ENERGIZED VALVE (central position)

	FLOW DIRECTION					
SPOOL TYPE	P→A	P→B	A→T	B→T	P→T	
	CURVES ON GRAPHS					
S3, SA3, SB3			2	2		
S4, SA4, SB4					7	

TIMES	ENERGIZING	DE-ENERGIZING
ms (±10%)	25 ÷ 75	15 ÷ 25

5 - OPERATING LIMITS OF MODULES

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

SPOOL TYPE	P-A CURVE	P-B CURVE
S1, SA1, SB1	1	1
S3, SA3, SB3	3	3
S4, SA4, SB4	5	5
TA, TB	2	2
TA02, TB02	2	2
TA23, TB23	2	2
RK	4	4
C3	3	3

6 - ELECTRICAL FEATURES

6.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded ring, and can be rotated to suit the available space. The interchangeability of coils of different voltages is allowed within the same type of supply current, rectified or direct.

Protection from atmospheric agents IEC 60529

Connector	IP 65	IP 67	IP 69 K
K1 DIN 43650	x		
K2 AMP JUNIOR	x	x	
K4 outgoing cables	х	х	
K7 DEUTSCH DT04 male	х	х	х
K8 AMP SUPER SEAL	х	х	х

NOTE: The protection degree is guaranteed only with the connector correctly wired and installed.

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation:	class H class H

6.2 - Current and absorbed power

In the table are shown current and power consumption values relevant to the different coil types. "R" coil must be used when the valve is fed with AC power supply subsequently rectified by means of rectifier bridge, externally or incorporated in the "D" type connector (see cat. 49 000).

DC Coils (values ±5 %)

	Resistance 20°C	Absorbed current	Absorbe	ed power			Coil code		
	[Ω]	[A]	[VV]	[VA]	K1	K2	K4	K7	K8
D12	5,4	2,2	26,5		1902740	1902750	1902770	1902980	1903020
D24	20,7	1,16	27,8		1902741	1902751	1902771	1902981	1903021
D28	27,5	1,02	28,5		1902744				
R110	363	0,25		27,2	1902742				
R230	1640	0,11		26,4	1902743				

7 - OVERALL AND MOUNTING DIMENSIONS

7.1 - Module

7.2 - Inlet plates for parallel configuration

7.3 - Inlet plate BD6S-F* for series configuration

7.4 - End plates

8 - INSTALLATION

Configurations with centering and return springs can be mounted in any position.

9 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector code **K1 (standard)**

connection for AMP JUNIOR connector

code K2

outgoing cable connections (length 100 cm) code ${\rm K4}$

DEUTSCH DT04-2P connection for DEUTSCH DT06-2S male connector code **K7**

connection for AMP SUPER SEAL (two contacts) connector type code **K8**

10 - ELECTRIC CONNECTORS

The solenoid valves are supplied without connectors. Connectors for standard electrical connection K1 (DIN 43650) can be ordered separately. See catalogue 49 000.

11 - ASSEMBLED VALVE - PARALLEL CONFIGURATION

11.1 - Identification code

11.2 - Hydraulic symbols and connection scheme

12 - ASSEMBLED VALVE - SERIES CONFIGURATION

12.1 - Identification code

12.2 - Hydraulic symbols and connection scheme

13 - OVERALL DIMENSION OF THE ASSEMBLED VALVE IN PARALLEL CONFIGURATION

dimensions in mm (6)С Ð Ð 6 የ 100 ⊕ Ð 37 26.5 195 UU) 5 (4) [•] + 10 $\left[1\right]$ የ ្រ \bigcirc Ţ 32 181 32 €∋ Θ Ð 6.5 [0] [0] 89 33 (2)А В Fixing foot 1 2 Inlet plate modules А В С 3 Valve bodies 185 211 145 2 4 Outlet plate 3 225 241 185 Pressure gauge port: 1/4" BSP 5 265 281 225 4 5 305 321 265 6 Identification label 345 361 305 6

14 - OVERALL DIMENSION OF THE ASSEMBLED VALVE IN SERIES CONFIGURATION

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

44 150/116 ED

BLS6 BANKABLE LOAD SENSING PROPORTIONAL **CONTROL VALVE SERIES 12**

p max 300 bar Q max 120 l/min

OPERATING PRINCIPLE

- The BLS6 directional control valve is stackable and can be assembled up to 8 different proportional and on/off modules .
- Each module is equipped with a meter-in compensator that keep costant the flow, independently from load changes.
- Sections with pressure compensators are not influenced in any way by other operated functions, provided that sufficient pump capacity is available. To correctly work, the sum of the flows contemporarily used must not overcome the 90% of the inlet flow.
- Working ports A and B are threaded 1/2" BSP. On the inlet module the ports P1, P2 and T1 are threaded 3/4" BSP.
- The manual lever override is available as option.

PERFORMANCES

(obtained with mineral oil with viscosity of 36 cSt at 50 $^\circ\text{C}$)

bar	300 250 20	
l/min	45 100 120	
see paragraph 4		
°C	-20 / +60	
°C	-20 / +80	
cSt	10 ÷ 400	
According to ISO 4406:1999 class 18/16/13		
cSt	25	
kg	4,5	
galvar	nic, zinc-nickel	
	bar I/min see °C °C cSt According cla cSt kg galvar	

HYDRAULIC SYMBOL

1 - IDENTIFICATION CODES FOR LOOSE MODULES

Here below are shown the identification codes of all the loose components of the bankable valve. To order a whole assembled valve, please use the codes at paragraphs 9 and 10.

The inlet section is available in different versions for fixed pumps and for systems with Load Sensing pump.

1.1 - Proportional module

1.2 - On-off modules

Proportional and on-off modules can be used together. In this case, the description for the spool type in the identification code has to be as follow:

SC = closed center with on-off solenoid

SA = open center with on-off solenoid

Two spools for high flow rates are available: SC60/60 and SA60/60.

1.3 - Inlet plates

The inlet section is available in different versions, for fixed and for variable pumps with load sensing. The version for fixed pump can be easily converted to work with variable pumps and vice versa.

1.4 - End plates

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4 or fluids HFDR type. For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

3 - CHARACTERISTIC CURVES

(values obtained with viscosity 36 cSt at 50 $^\circ\text{C})$

Typical constant flow rate obtained through the embedded compensator, and current with 12V solenoid type (for D24 version the maximum current is 860 mA), measured for the various spool types available.

ASYMMETRICAL FLOWS - PC and PA SPOOLS

Δp

4 - ELECTRICAL CHARACTERISTICS

Proportional solenoid

The proportional solenoid comprises two parts: tube and coil.

The tube, screwed to the valve body, contains the armature which is designed to maintain friction to a minimum thereby reducing hysteresis.

The coil is mounted on the tube secured by means of a lock nut.

It can be rotated through 360° depending on installation clearances.

NOMINAL VOLTAGE	V DC	12	24
RESISTANCE (at 20°C) K1 coil K7 coil	Ω	3.66 4	17.6 19
NOMINAL CURRENT	A	1.88	0.86
DUTY CYCLE	100%		
PWM FREQUENCY	Hz	200	100
ELECTROMAGNETIC COMPATIBILITY (EMC)	According to 2004/108/EC		
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation:	class H class F		

Protection from atmospheric agents IEC EN 60529

Plug-in type	IP 65	IP 69 K
K1 DIN 43650	x (*)	
K7 DEUTSCH DT04 male	х	x (*)

(*) The protection degree is guaranteed only with the connector correctly connected and installed

5 - STEP RESPONSE

(measured with mineral oil with viscosity of 36 cSt at 50 $^{\circ}\mathrm{C}$ with electronic control units)

Step response is the time (delay) taken for the valve to reach 90% of the set position value following a step change of the reference signal.

Reference signal step	0 →100%	100 →0%			
STEP RESPONSE [ms]					
BLS6	50	40			

6 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector code **K1** (standard)

connection for DEUTSCH DT04-2P connector type code K7

7 - ELECTRIC CONNECTORS

The on-off modules are supplied without connectors. For on-off coils with standard electrical connection K1 type (DIN 43650) the connectors can be ordered separately: see catalogue 49 000.

8 - OVERALL AND MOUNTING DIMENSIONS

8.1 - Proportional module

D

BLS6 SERIES 12

8.3 - End plates

9 - IDENTIFICATION CODE OF ASSEMBLED VALVE

10 - INSTALLATION AND OVERALL DIMENSIONS OF THE ASSEMBLED VALVE

11 - MANUAL OVERRIDE

The standard valve has solenoids whose pin for the manual operation is integrated in the tube. The operation of this control must be executed with a suitable tool, minding not to damage the sliding surface.

Three different manual overrides are available upon request:

- CM manual override, boot protected.
- CH lever manual override.

- CK knob. When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

NOTE: The overall dimension shown in the drawings is for the proportional modules; In ON-OFF modules consider an increase of 5 mm compared to the reported dimensions.

12 - ELECTRONIC CONTROL UNITS

One solenoid

EDC-111	for solenoid 24V DC	nlug version	see cat.
EDC-141	for solenoid 12V DC		89 120
EDM-M111	for solenoid 24V DC	DIN EN 50022	see cat.
EDM-M141	for solenoid 12V DC	rail mounting	89 250

These cards drive only a module at once. Every module to be driven with electronic card must have its one.

Two solenoids

EDM-M211	for solenoid 24V DC	rail mounting	see cat.
EDM-M241	for solenoid 12V DC	DIN EN 50022	89 250

13 - EXAMPLES OF APPLICATION

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

44 200/115 ED

BFD* SIX WAYS BANKABLE FLOW DIVERTER SERIES 10

p max 320 bar Q max 90 l/min

OPERATING PRINCIPLE

- BFD* is a 6 ways bankable flow diverter that allows the simultaneous connection of two utilities, alternating the direction of flow through a solenoid operated directional valve.
- It is available in two sizes, depending on the requested flow, and is used mainly for compact applications for the mobile sector.
- The BFD* valve is also suitable for series mounting, lining up to max 5 modules.
- The external drain is available as an option on both sizes.
- The BFD* diverters are supplied with a finishing surface treatment zinc-nickel, suitable to ensure a salt spray resistance up to 240 hours. Versions with plastic coil or with zinc-nickel finished coil reach 600 hour resistance.

PERFORMANCES

(obtained with mineral oil with viscosity of 36 cSt at 50°C)

		BFD06	BFD10	
Maximum operating pressure: - with drain Y	bar	250 320		
Maximum flow	l/min	60 90		
Pressure drops ∆p - Q	see	paragraph 3	3	
Electrical features	see	see paragraph 6		
Operating limits	see	see paragraph 4		
Electrical connections	see	paragraph 11		
Ambient temperature range	nbient temperature range °C -20 / +5		+50	
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	According cla	to ISO 4406:1999 ss 20/18/15		
Recommended viscosity	cSt	25		
Mass	kg	3	4,2	
Surface treatment	z	zinc-nickel		

HYDRAULIC SYMBOL

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - CHARACTERISTIC CURVES

(obtained with viscosity 36 cSt at 50 °C)

3.1 - Pressure drops Δp -Q at initial position

4 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

VALVE	CURVE
BFD06	1
BFD06*/Y	2
BFD10	3
BFD10*/Y	4

5 - SWITCHING TIMES

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

TIMES ms (±10%)	ENERGIZING	DE-ENERGIZING		
BFD06	25 ÷ 75	20 ÷ 50		
BFD10	50 ÷ 100	20 ÷ 40		

6 - ELECTRICAL CHARACTERISTICS

6.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

Protection from atmospheric agents EN 60529

Plug-in type	IP	
K1 DIN 43650	IP 65	
K7 DEUTSCH DT04 male	IP 69 K	

NOTE: The protection degree is guaranteed only with the connector correctly connected and installed.

NOTE 2: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 2)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation	class H class F (BFD06) class H (BFD10)

6.2 - Current and absorbed power

WK1 and WK7D coils have a zinc-nickel surface treatment and are specific for the high resistant version to salt spray.

The WK7D coil includes a suppressor diode of pulses for protection from voltage peaks during switching. During the switching the diode significantly reduces the energy released by the winding, by limiting the voltage to 31.4V in the D12 coil and to 58.9 V in the D24 coil.

Valve	Coil	Resistance at 20°C	Current consumption	Absorbed power	Coil code			
		[Ω] (±5%)	[A] (±10%)	[W] (±10%)	K1	WK1	K7	WK7D
BFD06*	D12	4 ÷ 5	2,72	32,7	1903080	1903050	1902940	1903400
	D24	18 ÷ 19,5	1,29	31	1903081	1903051	1902941	1903401
	D28	24,5 ÷ 27	1,11	31	1903082	-		
BFD10*	D12	2,9	4,14	50	1903150	-		
	D24	12,3	1,95	47	1903151	-		

7 - BFD06-G038 OVERALL AND MOUNTING DIMENSIONS

BFD* SERIES 10

8 - BFD06-G012 OVERALL AND MOUNTING DIMENSIONS

9 - BFD10 OVERALL AND MOUNTING DIMENSIONS

10 - INSTALLATION

The solenoid operated valve can be installed in any position without undermining the proper functioning.

11 - ELECTRICAL CONNECTIONS

The standard connection K1 (for connector DIN 43650) is described in the dimension drawings. The K7 and WK7D connections are only available for BFD06* valves.

12 - ELECTRICAL CONNECTORS

The solenoid valves are supplied without connectors. For coils with standard electrical connection K1 type (DIN 43650) the connectors can be ordered separately: see catalogue 49 000.

13 - OPTIONS

13.1 - Subplate external drain port (option Y)

This version allows the operation with pressures up to 320 bar on the ports.

It consists in a Y drain hole realized on the valve coupling interface, where the Y port is connected with the solenoid tubes: in this way the tubes are not stressed by the pressure operating on the valve ports.

14 - MANUAL OVERRIDES

14.1 - Boot manual override

The standard valve has solenoids whose pin for the manual operation is integrated in the tube. The operation of this control must be executed with a suitable tool, minding not to damage the sliding surface. Option is available on both versions.

14.2 - Knob

When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

Spanner: 3 mm

15 - SERIES CONFIGURATION

The BFD* valve can also be assembled in series, bundled up to 5 individual modules. The fixing kit must be ordered separately. It includes: rods and screws, nuts, security washers and OR, as indicated in the table below.

15.1 - Hydraulic scheme, dimensions and installation

8+8

8+8

6

8

3

4

3404200004

3404200005

4

5

12

14

251

317

264

330

285

350

4 tie-rods M8x265

4 tie-rods M8x330

3404200014

3404200015

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com